Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/102412
Title: CFD analysis of the effect of heterogeneous hull roughness on ship resistance
Authors: Ravenna, Roberto
Song, Soonseok
Shi, Weichao
Sant, Tonio
De Marco Muscat-Fenech, Claire
Tezdogan, Tahsin
Demirel, Yigit Kemal
Keywords: Computational fluid dynamics
Ships -- Hydrodynamics
Metals -- Testing
Materials -- Mechanical properties
Strength of materials
Ship resistance
Issue Date: 2022
Publisher: Elsevier
Citation: Ravenna, R., Song, S., Shi, W., Sant, T., De Marco Muscat-Fenech, C., Tezdogan, T., & Demirel, Y. K. (2022). CFD analysis of the effect of heterogeneous hull roughness on ship resistance. Ocean Engineering, 258, 111733.
Abstract: Hull roughness significantly increases ship resistance, power, and fuel consumption. Although it is typically spatially heterogeneous, little research has dealt with heterogeneously distributed roughness on ship hulls. Therefore, this study investigates the heterogeneous hull roughness effect on ship resistance using Computational Fluid Dynamics (CFD). A series of CFD simulations were conducted on the KRISO Container Ship (KSC) hull model to accurately predict the effect of heterogeneous hull roughness on ship resistance. Specifically, the StarCCM + software package was adopted to develop Unsteady Reynolds Averaged Navier–Stokes (URANS)- based CFD simulations with a modified wall-function approach. Various surface coverage conditions were modelled, including homogeneous (i.e., smooth and full rough conditions) and heterogeneous conditions (i.e., different smooth/rough wetted surface ratios). Eventually, the present findings showed that increased roughness on the bulbous bow region has the most significant impact on ship resistance. Moreover, the introduction of a socalled roughness impact factor correlated the added resistance of the heterogeneous roughness scenarios to the corresponding rough wetted surface area. Accordingly, the rough bulbous bow scenario presented a higher roughness impact factor than the other rough hull cases.
URI: https://www.um.edu.mt/library/oar/handle/123456789/102412
Appears in Collections:Scholarly Works - FacEngME

Files in This Item:
File Description SizeFormat 
CFD analysis of the effect of heterogeneous hull roughness on ship resistance 2022.pdf5.3 MBAdobe PDFView/Open


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.