Please use this identifier to cite or link to this item:
https://www.um.edu.mt/library/oar/handle/123456789/105356
Title: | A framework for concurrent consideration in advanced product development technology selection |
Authors: | Farrugia, Philip Francalanza, Emmanuel Coppini, K. |
Keywords: | Product design -- Decision making Manufacturing processes -- Evaluation New products -- Technological innovations Rapid prototyping Laser sintering |
Issue Date: | 2011 |
Publisher: | ASME |
Citation: | Farrugia, P. J., Francalanza, E., & Coppini, K. (2011). A framework for concurrent consideration in advanced product development technology selection. In Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2011), Washington D.C., DETC2011-47176. 567-576. |
Abstract: | In order to survive in the modern market, manufacturing companies need to invest in Advanced Product Development Technologies (APDTs). The problem many companies face, however, is the huge variety of possible technologies available. Examples of these are Stereo Lithography Apparatus (SLA), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), Virtual Prototyping and many others. A literature review revealed that there were many attempts at implementing decision support tools, for the selection of the most appropriate APDT for a particular application. These tools were limited in scope to a small range of technologies. Examples of this are the several attempts in the field of Rapid Prototyping. Furthermore the approaches which exist focus on the technical requirements only of the machine and very rarely take into consideration the needs of the manufacturing organization as a whole. Therefore as a result, there is a lack of decision support tools for selecting APDTs while considering the different Product Development (PD) stages. One area in which these APDTs excel is in the reduction of lead times to develop a product. Therefore the implementation of such technologies can potentially reduce the time-to-market of companies investing in them. The question which remains unanswered is: how does one choose the technology which will deliver the greatest improvement with regards to time-to-market? To address this question, this research developed a framework which allows stakeholders in the organization to select the most appropriate technology to reduce time-to-market for companies following the Integrated Product Development (IPD) model. This framework is based on their requirements and a structured approach. This paper presents the framework developed to this end, which was implemented in an Information and Communication Technology (ICT)-based prototype tool. The novelty of the proposed framework lies in the fact that it combines Multiple Attribute Decision Methods (MADM), more specifically Analytical Hierarchical Process (AHP) and Simple Additive Weighting (SAW) along with the IPD model and continuous improvement practices. The validity of the proposed ICT tool was evaluated qualitatively by stakeholders from different PD perspectives such as sales and marketing, product design and manufacturing. The evaluation results provide a degree of evidence that the proposed framework and ICT tool were effective at meeting the time-to-market shortcomings of current product development practices of companies. |
URI: | https://www.um.edu.mt/library/oar/handle/123456789/105356 |
ISBN: | 9780791854792 |
Appears in Collections: | Scholarly Works - FacEngIME |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A framework for concurrent consideration in advanced product development technology selection 2011.pdf Restricted Access | 1.41 MB | Adobe PDF | View/Open Request a copy |
Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.