Please use this identifier to cite or link to this item:
https://www.um.edu.mt/library/oar/handle/123456789/107177
Title: | A genetic algorithm-based energy-aware multi-hop clustering scheme for heterogeneous wireless sensor networks |
Authors: | Muthukkumar, R. Garg, Lalit Maharajan, K. Jayalakshmi, M. Jhanjhi, Nz Parthiban, S. Saritha, G. |
Keywords: | Wireless sensor networks -- Energy conservation Genetic algorithms -- Data processing Wireless sensor nodes Computer communication systems -- Management Routing (Computer network management) |
Issue Date: | 2022 |
Publisher: | PeerJ, Ltd. |
Citation: | Muthukkumar, R., Garg, L., Maharajan, K., Jayalakshmi, M., Jhanjhi, N., Parthiban, S., & Saritha, G. (2022). A genetic algorithm-based energy-aware multi-hop clustering scheme for heterogeneous wireless sensor networks. PeerJ Computer Science, 8, e1029. |
Abstract: | Background: The energy-constrained heterogeneous nodes are the most challenging
wireless sensor networks (WSNs) for developing energy-aware clustering schemes.
Although various clustering approaches are proven to minimise energy consumption
and delay and extend the network lifetime by selecting optimum cluster heads (CHs),
it is still a crucial challenge. Methods: This article proposes a genetic algorithm-based energy-aware multi-hop clustering (GA-EMC) scheme for heterogeneous WSNs (HWSNs). In HWSNs, all the nodes have varying initial energy and typically have an energy consumption restriction. A genetic algorithm determines the optimal CHs and their positions in the network. The fitness of chromosomes is calculated in terms of distance, optimal CHs, and the node's residual energy. Multi-hop communication improves energy efficiency in HWSNs. The areas near the sink are deployed with more supernodes far away from the sink to solve the hot spot problem in WSNs near the sink node. Results: Simulation results proclaim that the GA-EMC scheme achieves a more extended network lifetime network stability and minimises delay than existing approaches in heterogeneous nature. |
URI: | https://www.um.edu.mt/library/oar/handle/123456789/107177 |
Appears in Collections: | Scholarly Works - FacICTCIS |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A genetic algorithm based energy aware multi hop clustering scheme for heterogeneous wireless sensor networks 2022.pdf | 4.58 MB | Adobe PDF | View/Open |
Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.