Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/109417
Title: An extended mixture distribution survival tree for patient pathway prognostication
Authors: Garg, Lalit
McClean, Sally
Barton, Maria
Meenan, Brian
Fullerton, Ken
Keywords: Stochastic processes -- Mathematical models
Hospital utilization -- Length of stay
Cerebrovascular disease -- Patients -- Hospital care
Computer science -- Mathematics
Gaussian processes
Issue Date: 2013
Publisher: Taylor & Francis
Citation: Garg, L., McClean, S., Barton, M., Meenan, B., & Fullerton, K. (2013). An extended mixture distribution survival tree for patient pathway prognostication. Communications in Statistics-Theory and Methods, 42(16), 2912-2934.
Abstract: Mixture distribution survival trees are constructed by approximating different nodes in the tree by distinct types of mixture distributions to improve within node homogeneity. Previously, we proposed a mixture distribution survival tree-based method for determining clinically meaningful patient groups from a given dataset of patients’ length of stay. This article extends this approach to examine the interrelationship between length of stay in hospital, outcome measures, and other covariates. We describe an application of this approach to patient pathway and examine the relationship between length of stay in hospital and/or treatment outcome using five-years’ retrospective data of stroke patients.
URI: https://www.um.edu.mt/library/oar/handle/123456789/109417
Appears in Collections:Scholarly Works - FacICTCIS

Files in This Item:
File Description SizeFormat 
An extended mixture distribution survival tree for patient pathway prognostication 2013.pdf
  Restricted Access
575.62 kBAdobe PDFView/Open Request a copy


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.