Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/111343
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCaro, Yair-
dc.contributor.authorLauri, Josef-
dc.contributor.authorZarb, Christina-
dc.date.accessioned2023-07-06T09:51:17Z-
dc.date.available2023-07-06T09:51:17Z-
dc.date.issued2015-
dc.identifier.citationCaro, Y., Lauri, J., & Zarb, C. (2015). Independence and matchings in σ-hypergraphs. Australasian Journal of Combinatorics, 63(1), 12-33.en_GB
dc.identifier.urihttps://www.um.edu.mt/library/oar/handle/123456789/111343-
dc.description.abstractLet σ be a partition of the positive integer r. A σ-hypergraph H = H(n, r, q|σ) is an r-uniform hypergraph on nq vertices which are partitioned into n classes V1, V2, . . . , Vn each containing q vertices. An r-subset K of vertices is an edge of the hypergraph if the partition of r formed by the non-zero cardinalities |K ∩ Vi |, 1 ≤ i ≤ n, is σ. In earlier works we have considered colourings of the vertices of H which are constrained such that any edge has at least α and at most β vertices of the same colour, and we have shown that interesting results can be obtained by varying α, β and the parameters of H appropriately. In this paper we continue to investigate the versatility of σ-hypergraphs by considering two classical problems: independence and matchings. We first demonstrate an interesting link between the constrained colourings described above and the k-independence number of a hypergraph, that is, the largest cardinality of a subset of vertices of a hypergraph not containing k + 1 vertices in the same edge. We also give an exact computation of the k-independence number of the σ-hypergraph H. We then present results on maximum, and sometimes perfect, matchings in H. These results often depend on divisibility relations between the parameters of H and on the highest common factor of the parts of σ.en_GB
dc.language.isoenen_GB
dc.publisherCentre for Discrete Mathematics & Computingen_GB
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_GB
dc.subjectHypergraphsen_GB
dc.subjectGraph theoryen_GB
dc.subjectMathematicsen_GB
dc.titleIndependence and matchings in σ-hypergraphsen_GB
dc.typearticleen_GB
dc.rights.holderThe copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.en_GB
dc.description.reviewedpeer-revieweden_GB
dc.publication.titleAustralasian Journal of Combinatoricsen_GB
Appears in Collections:Scholarly Works - FacSciMat

Files in This Item:
File Description SizeFormat 
Independence_and_matchings_in_σ_hypergraphs_2015.pdf
  Restricted Access
302.61 kBAdobe PDFView/Open Request a copy


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.