Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/126777
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBufano, Filomena-
dc.contributor.authorBordiu, Cristobal-
dc.contributor.authorCecconello, T.-
dc.contributor.authorMunari, M.-
dc.contributor.authorHopkins, Andrew M.-
dc.contributor.authorIngallinera, A.-
dc.contributor.authorLeto, P.-
dc.contributor.authorLoru, S.-
dc.contributor.authorRiggi, Simone-
dc.contributor.authorSciacca, Eva-
dc.contributor.authorVizzari, G.-
dc.contributor.authorDeMarco, Andrea-
dc.contributor.authorBuemi, C.S.-
dc.contributor.authorCavallaro, F.-
dc.contributor.authorTrigilio, C.-
dc.contributor.authorUmana, G.-
dc.date.accessioned2024-09-19T07:19:22Z-
dc.date.available2024-09-19T07:19:22Z-
dc.date.issued2024-
dc.identifier.citationBufano, F., Bordiu, C., Cecconello, T., Munari, M., Hopkins, A. M., Ingallinera, A., ... & Umana, G. (2024). Deep learning in the SKA era: patterns in the SNR population with unsupervised ML methods. In J. Ibsen, & G. Chiozzi, (Eds.), Software and Cyberinfrastructure for Astronomy VIII (pp. 1524-1528). California: SPIE.en_GB
dc.identifier.urihttps://www.um.edu.mt/library/oar/handle/123456789/126777-
dc.description.abstractThe Square Kilometre Array precursors are releasing the first data of their large-field continuum surveys. The complexity of such datasets makes clear that deep learning is the primary solution for handling an overwhelming volume of data also in the radio astronomy field. Within this framework, our research group is taking a forefront position in various research initiatives aimed at assessing the effectiveness of ML techniques on survey data from ASKAP and MeerKAT. In this work we show how an unsupervised multi-stage pipeline is able to discover physically meaningful clusters within the heterogeneous Supernova Remnant (SNR) population: a convolutional autoencoder extracts features from multiwavelength imagery of a SNR sample; then an unsupervised clustering process operates on the latent space to identify patterns. Despite a large number of outliers, we were able to find a new classification system, in which most clusters relate to the presence of certain features regarding not only the morphology but also the relative weight of the different frequencies.en_GB
dc.language.isoenen_GB
dc.publisherSPIEen_GB
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_GB
dc.subjectMachine learningen_GB
dc.subjectAstrophysicsen_GB
dc.subjectSupernova remnantsen_GB
dc.subjectRadio telescopesen_GB
dc.subjectAntenna arraysen_GB
dc.subjectVery large array telescopes -- Technological innovationsen_GB
dc.titleDeep learning in the SKA era : patterns in the SNR population with unsupervised ML methodsen_GB
dc.title.alternativeSoftware and cyberinfrastructure for astronomy VIIIen_GB
dc.typebookParten_GB
dc.rights.holderThe copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holderen_GB
dc.description.reviewedpeer-revieweden_GB
dc.identifier.doi10.1117/12.3026706-
Appears in Collections:Scholarly Works - InsSSA

Files in This Item:
File Description SizeFormat 
Deep_learning_in_the_SKA_era.pdf
  Restricted Access
1.89 MBAdobe PDFView/Open Request a copy


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.