Please use this identifier to cite or link to this item:
https://www.um.edu.mt/library/oar/handle/123456789/22773
Title: | 7-Nitroindazole protects striatal dopaminergic neurons from MPP+- induced degeneration : an in vivo microdialysis study |
Authors: | Di Matteo, Vincenzo Benigno, Arcangelo Pierucci, Massimo Giuliano, Davide Antonio Crescimanno, Giuseppe Esposito, Ennio Di Giovanni, Giuseppe |
Keywords: | Microdialysis Nitric oxide Parkinson's disease -- Treatment Corpus striatum |
Issue Date: | 2006 |
Publisher: | Wiley-Blackwell Publishing Ltd. |
Citation: | Di Matteo, V., Benigno, A., Pierucci, M., Giuliano, D. A., Crescimanno, G., Esposito, E., & Di Giovanni G. (2006). 7-Nitroindazole protects striatal dopaminergic neurons from MPP+- induced degeneration : an in vivo microdialysis study. Annals of the New York Academy of Sciences. 1089(1), 462–471. |
Abstract: | The neuropathological hallmark of Parkinson's disease (PD) is the selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). In this study, using a microdialysis technique, we investigated whether an inhibitor of neuronal nitric oxide synthase (nNOS), 7-nitrindazole (7-NI), could protect against DAergic neuronal damage induced by in vivo infusion of 1-methyl-4-phenylpiridinium iodide (MPP+) in freely moving rats. Experiments were performed over 2 days in three groups of rats: (a) nonlesioned, (b) MPP+-lesioned, and (c) 7-NI pretreated MPP+-lesioned rats. On day 1, control rats were perfused with an artificial CSF, while 1 mM MPP+ was infused into the striatum for 10 min in the other two groups. The infusion of the MPP+ produced a neurotoxic damage of the SNc DA neurons and increased striatal DA levels. On day 2, 1 mM MPP+ was reperfused for 10 min into the striata of each rat group and DA levels were measured as an index of neuronal cell integrity. The limited rise of DA following MPP+ reperfusion in the MPP+-lesioned rats was due to toxin-induced neuronal loss and was reversed by pretreatment with 7-NI (50 mg/kg, intraperitoneally) on day 1, indicating a neuroprotective effect by inhibiting NO formation. These results indicate that neuronally derived NO partially mediates MPP+-induced neurotoxicity. The similarity between the MPP+ model and PD suggests that NO may play a significant role in its etiology. |
URI: | https://www.um.edu.mt/library/oar//handle/123456789/22773 |
Appears in Collections: | Scholarly Works - FacM&SPB |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
annals.1386.015.pdf Restricted Access | 256.52 kB | Adobe PDF | View/Open Request a copy |
Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.