Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/26566
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2018-02-08T09:53:16Z-
dc.date.available2018-02-08T09:53:16Z-
dc.date.issued2018-
dc.identifier.citationBarzanjeh, S., Aquilina, M., & Xuereb, A. (2018). Manipulating the flow of thermal noise in quantum devices. Retrieved from arXiv preprint https://arxiv.org/abs/1706.09051v2en_GB
dc.identifier.urihttps://www.um.edu.mt/library/oar//handle/123456789/26566-
dc.description.abstractThere has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this paper, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.en_GB
dc.description.sponsorshipWe acknowledge funding from the European Union’s Horizon 2020 research and innovation pro5 gram under grant agreement No. 732894 (FETPRO HOT). SB acknowledges support under the Marie Sklodowska-Curie Actions programme, grant agreement No. 707438 (MSCA-IFEF- ST SUPEREOM).en_GB
dc.language.isoenen_GB
dc.publisherCornell Universityen_GB
dc.rightsinfo:eu-repo/semantics/openAccessen_GB
dc.subjectQuantum systemsen_GB
dc.subjectQuantum opticsen_GB
dc.subjectOptomechanicsen_GB
dc.subjectNanoelectronicsen_GB
dc.titleManipulating the flow of thermal noise in quantum devicesen_GB
dc.typearticleen_GB
dc.rights.holderThe copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.en_GB
dc.description.reviewednon peer-revieweden_GB
dc.contributor.creatorBarzanjeh, Shabir-
dc.contributor.creatorAquilina, Matteo-
dc.contributor.creatorXuereb, Andre-
Appears in Collections:Scholarly Works - FacSciPhy

Files in This Item:
File Description SizeFormat 
Manipulating the flow of thermal noise in quantum devices.pdf830.42 kBAdobe PDFView/Open


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.