Please use this identifier to cite or link to this item:
https://www.um.edu.mt/library/oar/handle/123456789/87308
Title: | Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand |
Authors: | Watson, Sally J. Mountjoy, Joshu J. Barnes, Philip M. Crutchley, Gareth J. Lamarche, Geoffroy Higgs, Ben Hillman, Jess Orpin, Alan R. Micallef, Aaron Neil, Helen Mitchell, John Pallentin, Arne Kane, Tim Woelz, Susi Bowden, David A. Rowden, Ashley A. Pecher, Ingo A. |
Keywords: | Landslides -- Risk assessment Submarine valleys Earthquakes -- New Zealand Submarine topography -- New Zealand Oceanography -- Research -- New Zealand |
Issue Date: | 2020 |
Publisher: | The Geological Society of America |
Citation: | Watson, S. J., Mountjoy, J. J., Barnes, P. M., Crutchley, G. J., Lamarche, G., Higgs, B., ... & Pecher, I. A. (2020). Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand. Geology, 48(1), 56-61. |
Abstract: | Hydrogeological processes influence the morphology, mechanical behavior, and evolution of subduction margins. Fluid supply, release, migration, and drainage control fluid pressure and collectively govern the stress state, which varies between accretionary and nonaccretionary systems. We compiled over a decade of published and unpublished acoustic data sets and seafloor observations to analyze the distribution of focused fluid expulsion along the Hikurangi margin, New Zealand. The spatial coverage and quality of our data are exceptional for subduction margins globally. We found that focused fluid seepage is widespread and varies south to north with changes in subduction setting, including: wedge morphology, convergence rate, seafloor roughness, and sediment thickness on the incoming Pacific plate. Overall, focused seepage manifests most commonly above the deforming backstop, is common on thrust ridges, and is largely absent from the frontal wedge despite ubiquitous hydrate occurrences. Focused seepage distribution may reflect spatial differences in shallow permeability architecture, while diffusive fluid flow and seepage at scales below detection limits are also likely. From the spatial coincidence of fluids with major thrust faults that disrupt gas hydrate stability, we surmise that focused seepage distribution may also reflect deeper drainage of the forearc, with implications for pore-pressure regime, fault mechanics, and critical wedge stability and morphology. Because a range of subduction styles is represented by 800 km of along-strike variability, our results may have implications for understanding subduction fluid flow and seepage globally. |
URI: | https://www.um.edu.mt/library/oar/handle/123456789/87308 |
Appears in Collections: | Scholarly Works - FacSciGeo |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Focused fluid seepage related to variations in accretionary wedge structure.pdf | 1.38 MB | Adobe PDF | View/Open |
Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.