Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/89995
Title: A multipurpose {RGB}-D dataset for saliency and image manipulation applications
Authors: Seychell, Dylan
Debono, Carl James
Bugeja, Mark
Borg, Jeremy
Sacco, Matthew
Keywords: Data sets
Object-oriented databases
Inpainting
Mixing
Image segmentation
Issue Date: 2021
Publisher: Institute of Electrical and Electronics Engineers IEEE
Citation: Seychell, D., Debono, C. J., Bugeja, M., Borg, J., & Sacco, M. (2021). A multipurpose RGB-D dataset for saliency and image manipulation applications. IEEE Access, 9, 21481-21497.
Abstract: Many modern computer vision systems include several modules that perform different processing operations packaged as a single pipeline architecture. This generally introduces a challenge in the evaluation process since most datasets provide evaluation data for just one of the operations. In this paper, we present an RGB-D dataset that was designed from first principles to cater for applications that involve salient object detection, segmentation, inpainting and blending techniques. This addresses a gap in the evaluation of image inpainting and blending applications that generally rely on subjective evaluation due to the lack of availability of comparative data. A set of experiments were carried out to demonstrate how the COTS dataset can be used to evaluate these different applications. This dataset includes a variety of scenes, where each scene is captured multiple times, each time adding a new object to the previous scene. This allows for a comparative analysis at pixel level in image inpainting and blending applications. Moreover, all objects were manually labeled in order to offer the possibility of salient object detection even in scenes that contain multiple objects. An online test with 1267 participants was also carried out, and this dataset also includes the click coordinates of users' selection for every image, introducing a user interaction dimension in the same RGB-D dataset. This dataset was also validated using state of the art techniques, obtaining an Fβ of 0.957 in salient object detection and a mean (Intersection over Union) IoU of 0.942 in Segmentation. Results demonstrate that the COTS dataset introduces novel possibilities for the evaluation of computer vision applications.
URI: https://www.um.edu.mt/library/oar/handle/123456789/89995
Appears in Collections:Scholarly Works - FacICTAI

Files in This Item:
File Description SizeFormat 
A_multipurpose_RGB_D_dataset_for_saliency_and_image_manipulation_applications.pdf2.22 MBAdobe PDFView/Open


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.