Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/98185
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRadnik, Jorg-
dc.contributor.authorHodoroaba, Vasile-Dan-
dc.contributor.authorJungnickel, Harald-
dc.contributor.authorTentschert, Jutta-
dc.contributor.authorLuch, Andreas-
dc.contributor.authorSogne, Vanessa-
dc.contributor.authorMeier, Florian-
dc.contributor.authorBurr, Loic-
dc.contributor.authorSchmid, David-
dc.contributor.authorSchlager, Christoph-
dc.contributor.authorYoon, Tae Hyun-
dc.contributor.authorPeters, Ruud-
dc.contributor.authorBriffa, Sophie M.-
dc.contributor.authorEugenia, Valsami-Jones-
dc.date.accessioned2022-06-20T10:59:01Z-
dc.date.available2022-06-20T10:59:01Z-
dc.date.issued2022-
dc.identifier.citationRadnik, J., Hodoroaba, V. D., Jungnickel, H., Tentschert, J., Luch, A., Sogne, V., ... & Valsami-Jones, E. (2022). Automation and standardization : a coupled approach towards reproducible sample preparation protocols for nanomaterial analysis. Molecules, 27, 985.en_GB
dc.identifier.urihttps://www.um.edu.mt/library/oar/handle/123456789/98185-
dc.description.abstractWhereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by automation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been developed, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data.en_GB
dc.language.isoenen_GB
dc.publisherMDPIen_GB
dc.rightsinfo:eu-repo/semantics/openAccessen_GB
dc.subjectNanostructured materialsen_GB
dc.subjectSample preparation (Chemistry)en_GB
dc.subjectAutomationen_GB
dc.subjectStandardizationen_GB
dc.titleAutomation and standardization : a coupled approach towards reproducible sample preparation protocols for nanomaterial analysisen_GB
dc.typearticleen_GB
dc.rights.holderThe copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.en_GB
dc.description.reviewedpeer-revieweden_GB
dc.identifier.doi10.3390/molecules27030985-
dc.publication.titleMoleculesen_GB
Appears in Collections:Scholarly Works - FacEngMME



Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.