

Data and Formulae Booklet for Advanced and Intermediate Physics

2022

Updated on 15 March, 2024

TABLE OF CONTENTS

Mechanics kinematics: uniformly accelerated motion	2
Mechanics dynamics	2
Mechanics dynamics: circular and rotational motion	3
Simple harmonic motion	3
Ray optics	4
Current electricity	5
Alternating current	5
Stationary waves on strings	6
Wave motion	6
Fields	6
Capacitance	8
Inductance	8
Electromagnetism	9
Temperature	10
First and second laws of thermodynamics	10
Gases	10
Materials	11
Heat transfer	11
Quantum phenomena	11
Radioactivity	12
Doppler shift	12
Mathematical Formulae	12
Physical Constants	13

Data and Formulae Booklet for Advanced and Intermediate Physics

The following equations and formulae may be useful in answering some of the questions in the examination.

Mechanics kinematics: uniformly accelerated motion

Equations of motion:
$$v = u + at$$

$$v^2 = u^2 + 2as$$

$$s = \left(\frac{u+v}{2}\right)t$$

$$s = ut + \frac{1}{2}at^2$$

Mechanics dynamics

Newton's second law:
$$F = \frac{dp}{dt} = \frac{d(mv)}{dt}$$

Kinetic Energy: K.E. =
$$\frac{1}{2}mv^2$$

Potential Energy:
$$P.E. = mgh$$

Mechanical Work Done:
$$W = Fs$$

Power:
$$P = Fv$$

Momentum:
$$p = mv$$

Mechanics dynamics: circular and rotational motion

Angular displacement: $s = r\theta$

Angular speed: $v = r\omega$ $\omega = \frac{d\theta}{dt}$

Angular acceleration: $a = r\alpha$ $\alpha = \frac{d\omega}{dt}$

Centripetal acceleration: $a = \frac{v^2}{r}$

Centripetal force: $F = \frac{mv^2}{r} = mr\omega^2$

Period: $T = \frac{2\pi r}{v}$

Angular momentum: $L = I\omega$

Torque: $au = I \alpha$

Work done in rotation: $W = \tau \theta$

Rotational Kinetic energy: K.E. = $\frac{1}{2}I\omega^2$

Simple harmonic motion

Displacement: $x = x_0 \sin(\omega t + \phi)$

Velocity:
$$v = \omega x_0 \cos(\omega t + \phi)$$

$$v = \pm \omega \sqrt{x_0^2 - x^2}$$

Acceleration:
$$a = -\omega^2 x$$

Period:
$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

Mass on a light spring:
$$T = 2\pi \sqrt{\frac{m}{k}}$$

Ray optics

Refractive index:
$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

$$_{1}n_{2} = \frac{\sin\left(\theta_{1}\right)}{\sin\left(\theta_{2}\right)} = \frac{v_{1}}{v_{2}}$$

Thin lenses:
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$
 (real is positive)

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$
 (Cartesian)

Magnification:
$$m = \frac{v}{u} = \frac{h_i}{h_o}$$
 (real is positive)

$$m = -\frac{v}{u} = -\frac{h_i}{h_0}$$
 (Cartesian)

Current electricity

Ohm's Law:
$$V = IR$$

Current:
$$I = nAvq$$

Resistors in series:
$$R_{\text{Total}} = R_1 + R_2 + \dots$$

Resistors in parallel:
$$\frac{1}{R_{\text{Total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Potential divider rule:
$$\frac{V_{\rm I}}{V_{\rm Total}} = \frac{R_{\rm I}}{R_{\rm Total}}$$

Power:
$$P = IV = I^2 R = \frac{V^2}{R}$$

Resistivity:
$$\rho = \frac{RA}{I}$$

Temperature coefficient:
$$\alpha = \frac{R_{\theta} - R_0}{R_0 \theta}$$

Alternating current

For sinusoidal alternating
$$V = V_0 \sin(\omega t + \phi)$$
 supply voltage: $V_0 = BAN\omega$

Root mean square for sinusoidal alternating
$$I_{\rm rms} = \frac{I_{\rm 0}}{\sqrt{2}} \qquad \qquad V_{\rm rms} = \frac{V_{\rm 0}}{\sqrt{2}}$$
 current and voltage:

$$X_L = 2\pi f L$$

$$X_L = 2\pi f L \qquad \qquad X_C = \frac{1}{2\pi f C}$$

Stationary waves on strings

$$f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}} = nf_1$$

$$v = \sqrt{\frac{T}{\mu}}$$

Wave motion

$$v = f\lambda$$

$$y = \frac{\lambda D}{d}$$

$$d\sin(\theta) = n\lambda \qquad d = \frac{1}{N}$$

$$d = \frac{1}{N}$$

$$\sin(\theta) \approx \theta = \frac{\lambda}{a}$$

$$\sin(\theta) \approx \theta = 1.22 \frac{\lambda}{a}$$

Fields

$$E = \frac{F}{q} = -\frac{dV}{dr}$$

Force between point charges:
$$F = \frac{Qq}{4\pi\varepsilon r^2}$$

 $E = \frac{V}{d}$

Electric field strength due to a point charge:
$$E = \frac{Q}{4\pi\varepsilon r^2}$$

Relative permittivity:
$$\mathcal{E}_r = \frac{\mathcal{E}}{\mathcal{E}_0}$$

Electric potential due to a point charge:
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

Work done when a point
$$W = qV = \Delta \left(\frac{1}{2}mv^2\right)$$

Gravitational field strength:
$$g = \frac{F}{m} = -\frac{dV}{dr}$$

Force between two point masses:
$$F = \frac{GMm}{r^2}$$

Gravitational field strength due to a point mass:
$$g = \frac{GM}{r^2}$$

Gravitational potential due to a point mass:
$$V = -\frac{GM}{r}$$

$$W = mV = \Delta \left(\frac{1}{2}mv^2\right)$$

Capacitance

Charge on a capacitor:
$$Q = CV$$

Capacitance of parallel plates:
$$C = \frac{\varepsilon_0 \varepsilon_r A}{d} = \frac{\varepsilon A}{d}$$

Capacitors in parallel:
$$C_{\text{Total}} = C_1 + C_2 + \dots$$

Capacitors in series:
$$\frac{1}{C_{\text{Total}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

Energy stored:
$$W = \frac{1}{2}CV^2$$

Charging:
$$Q = Q_0 \left(1 - e^{-t/RC} \right)$$

Discharging:
$$Q = Q_0 e^{-t/\!\!/_{RC}}$$

Inductance

Self-inductance:
$$E_1 = -L \frac{dI_1}{dt}$$

Mutual inductance:
$$E_2 = -M \frac{dI_1}{dt}$$

Energy stored:
$$W = \frac{1}{2}LI^2$$

Electromagnetism

Force on wire: $F = BIl \sin(\theta)$

Torque on a rectangular coil: $\tau = BANI\cos(\theta)$

Force on moving charge: $F = BQv\sin(\theta)$

Magnetic flux: $\phi = BA$

Field inside a solenoid: $B = \mu_0 \mu_r nI$

Field near a long straight wire: $B = \frac{\mu_0 I}{2\pi r}$

Induced e.m.f.: $E = -\frac{d(N\phi)}{dt}$

E.m.f. induced in a moving straight conductor in a E = Blv uniform magnetic field:

Hall voltage: $V_{H} = \frac{BI}{nqt}$

Temperature

scale:

$$\theta = \frac{X_{\theta} - X_{0}}{X_{100} - X_{0}} \times 100 \,^{\circ}\text{C}$$

Temperature absolute

scale:

$$T = 273.16 \frac{P}{P_{tr}} \,\mathrm{K}$$

$$\theta(^{\circ}C) = T(K) - 273.15 K$$

First and second laws of thermodynamics

First law of

thermodynamics:

 $\Delta U = \Delta Q + \Delta W$

(Work done by system is negative)

 $\Delta U = \Delta Q - \Delta W$

(Work done by system is positive)

Efficiency of an ideal heat

engine:

$$\eta = 1 - \frac{T_c}{T_h}$$

Gases

Ideal gas equation:

PV = nRT = NkT

Kinetic theory of an ideal

gas:

 $PV = \frac{1}{3} Nm \langle c^2 \rangle$

Boltzmann's constant:

 $k = \frac{R}{N_{\rm A}}$

capacities of an ideal gas:

$$\gamma = \frac{C_P}{C_V}$$

$$C_P - C_V = R$$

$$PV^{\gamma} = \text{constant}$$

Materials

Hooke's law:

$$F = k\delta l$$

Stress:

$$\sigma = \frac{F}{A}$$

Strain:

$$\varepsilon = \frac{\delta l}{l}$$

Young's modulus:

$$Y = \frac{\sigma}{\varepsilon}$$

Energy stored in a stretched wire:

$$E = \frac{1}{2}k(\delta l)^2$$

Heat transfer

Thermal conduction:

$$\frac{dQ}{dt} = -kA\frac{d\theta}{dx}$$

Quantum phenomena

Quantum energy:

$$E = hf$$

Mass-energy:

$$E = mc^2$$

$$hf = \phi + \left(\frac{1}{2}mv^2\right)_{\text{max}}$$

$$\Delta E = E_2 - E_1 = hf = \frac{hc}{\lambda}$$

$$\lambda = \frac{h}{mv}$$

Radioactivity

$$\frac{dN}{dt} = -\lambda N$$

$$A = \lambda N$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln(2)}{\lambda} = \frac{0.693}{\lambda}$$

Absorption law for gamma radiation:

$$I = I_0 e^{-\mu d}$$

Doppler shift

$$f = f_0 \left(1 - \frac{v}{c} \right)$$

Mathematical Formulae

Surface area of a sphere: $S = 4\pi r^2$

$$S = 4\pi r^2$$

Volume of a sphere:
$$V = \frac{4}{3}\pi r^3$$

Surface area of a cylinder:
$$S = 2\pi rh + 2\pi r^2$$

Volume of a cylinder:
$$V = \pi r^2 h$$

Logarithms:
$$\log_a(bc) = \log_a(b) + \log_a(c)$$

$$\log_a\left(\frac{b}{c}\right) = \log_a(b) - \log_a(c)$$

$$\log_a(b^c) = c \log_a(b)$$

$$\log_a(a) = 1$$

Equation of a straight line:
$$y = mx + c$$

Relationship between
$$\sin(90^{\circ} \pm \theta) = \cos(\theta)$$
 cosine and sine:

Relationship between
$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

Small angles:
$$\sin(\theta) \approx \tan(\theta) \approx \theta$$
 (in radians)

Difference of two squares:
$$x^2 - y^2 = (x + y)(x - y)$$

Formula for the roots of a quadratic equation:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Physical Constants

Acceleration of free fall on
$$g = 9.81 \,\mathrm{m \, s^{-2}}$$

and near the Earth's surface:

Boltzmann constant: $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Molar gas constant: $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Avogadro's constant: $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

Coulomb's law constant: $k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

Charge of an electron: $e = -1.60 \times 10^{-19} \, \mathrm{C}$

Rest mass of an electron: $m_e = 9.11 \times 10^{-31} \text{ kg}$

Rest mass of a proton: $m_p = 1.673 \times 10^{-27} \text{ kg}$

Rest mass of a neutron: $m_n = 1.675 \times 10^{-27} \text{ kg}$

Unified atomic mass unit: $1 u = 1.66 \times 10^{-27} \text{ kg}$

 $1 \text{ u} = 931.5 \text{ MeV/}c^2$

Electronvolt: $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Permittivity of free space: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$

Permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$

Planck constant: $h = 6.63 \times 10^{-34} \text{ J s}$

Speed of light in a vacuum: $c = 3.00 \times 10^8 \text{ m s}^{-1}$

Range of wavelengths for

visible light:

 $\lambda = 400 \text{ nm to } 700 \text{ nm}$

One year: 1 year = 365.25 days

One light year: $1 \text{ ly} = 9.46 \times 10^{15} \text{ m}$