

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

ADVANCED MATRICULATION LEVEL 2021 FIRST SESSION

istry
İ

PAPER NUMBER:

DATE: 28th June 2021

TIME: 9:00 a.m. to 12:05 p.m.

Required Data: Universal Gas constant (R) = $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$.

Answer ALL questions

		ctions.	
a) State Hes	s's Law.		
			(1)

b) Consider the following thermochemical data:

The enthalpy change of formation of liquid carbon disulfide, CS ₂ (I)	+87.9 kJ mol ⁻¹
The enthalpy change of combustion of carbon, C(s)	-393.5 kJ mol ⁻¹
The enthalpy change of combustion of sulfur, S(s)	-296.8 kJ mol ⁻¹

Construct a cycle and calculate the enthalpy change for the following reaction:

$CS_2(I) + 3O_2(g)$	 $CO_2(g) + 2SO_2(g)$	

Question continues on next page

(5)

DO NOT WRITE ABOVE THIS LINE

C)) The enthalpy change of formation of carbon disulfide is an example of the fact that the sign of ΔH of a reaction is not enough to explain the spontaneity of a reaction. Explain how
	carbon disulfide can form spontaneously even though its enthalpy of formation is endothermic.
	(3)
	(Total: 9 marks)
. a) A sample of gas has a mass of 53.5 g. It occupies a volume of 30.0 dm 3 at a pressure of 101,000 Pa and a temperature of 27 $^{\circ}$ C. Assuming ideal gas behaviour, determine the molar mass of the gas.
	(4)
b) State the assumptions for ideal gas behaviour and explain the conditions under which ideal gas behaviour can be expected.
	(4)

				(Total: 1	L1 mar
a) Write a	n equation for the	e acid dissociation	constant, Ka, of a	ı weak acid.	
dissoci		ol ⁻¹ . Explain wha	t this implies abou	The enthalpy char	-

4.

DO NOT WRITE ABOVE THIS LINE

i) The above mixture is known as a buffer solution. Explain what is meant b	v this term.
	,
	(
ii) Find the pH of the solution assuming the value of K_a given in part (b).	
	(
(Tota	l: 11 mark
nis question is about the transition metal chromium. Explain what is meant by a transition metal.	
·	(
Explain what is meant by a transition metal.	
Explain what is meant by a transition metal.	
Give the electronic configuration of the following species in s, p, d, f notation	n. (
Explain what is meant by a transition metal. Give the electronic configuration of the following species in s, p, d, f notation Cr	າ(
Explain what is meant by a transition metal. Give the electronic configuration of the following species in s, p, d, f notation Cr Cr(III)	n. (

								(2)
e)	In the space t	pelow draw	v, the struc	tures of th	e chromate	(VI) and di	chromate(\	/I) ions.
	L						(Total:	(3) 10 marks)
5. a)	The first ionisa	ation energ	gies of the e	elements ir	the period	lithium to f	luorine are	as follows:
			Ве	В	С	N	0	F
Elem		Li			1			F
	ent E / kJ mol ⁻¹	Li 520	900	801	1086	1503	1314	1681
		520	900	801		1503	1314	
	E / kJ mol ⁻¹	520	900 creasing tr	801 end across		1503		1681
	E / kJ mol ⁻¹	520 general in	900 creasing tr	801 end across	the period.	1503		1681
	i) Explain the	520 general in	900 creasing tr	801 end across	the period.	1503		1681

6.

DO NOT WRITE ABOVE THIS LINE

soli	d at room temperat					
						(
						·
tab	le, can form PCl₃ an	d PCl ₅ whilst ni	trogen can c	nly form NCI	3.	
						(
						: 12 mark
 is au	uestion is about nitro					
	uestion is about nitro	ogen and its co	mpounds.		(Tota	: 12 mark
		ogen and its co	mpounds.		(Tota	: 12 mark
		ogen and its co	mpounds.		(Tota	: 12 mark
		ogen and its co	mpounds.		(Tota	: 12 mark
		ogen and its co	mpounds.		(Tota	: 12 mark
		ogen and its co	mpounds.		(Tota	: 12 mark
		ogen and its co	mpounds.		(Tota	: 12 mark

DO NOT WRITE ABOVE THIS LINE

b)) Give balanced chemical equations for the preparation of nitrogen dioxide and d pentoxide.	initrogen
		(2)
c)	Explain why ammonia is a weak Brønsted-Lowry base. In your explanation in equation for the reaction of ammonia with water.	clude an
		(2)
d)) The oxoacids of nitrogen are nitric(III) acid and nitric(V) acid.	
	i) Describe the laboratory preparation of nitric(III) acid.	
		(2)
	ii) Nitric(V) acid is both a strong acid and an oxidising agent. By means of approximation chemical equations give an example of each .	oropriate
		(2)
	iii) In the space below, draw the structure of nitric(III) acid, including plausil angles.	ble bond

(Total: 12 marks)
Please turn the page.

7.	This	s question is about haloalkanes. Give the structural formula of the main organic product forming, if at all, from each of the following mixtures.				
		i) 1-bromobutane with aqueous KOH (Reaction 1)				
		ii) 1-bromobutane with alcoholic KOH (Reaction 2)	_ (1)			
			_ (1)			
	b)	What are the mechanisms involved in each of the reactions above?				
		i) Reaction 1:				
		ii) Reaction 2:	_ (1)			
		iii) In the space below, give the mechanism for Reaction 1.	_			
			(4)			

c)	Haloalkanes can also be converted to amines. Give an equation and conditions, if any, f the conversion of 1-bromobutane into an amine.	or
		_
	(2)

- 8. This question is about isomerism.
 - a) Alprenolol is a beta-blocker that is used to treat angina (heart problems) and exists as two stereoisomers which are optically active. Industrially, alprenolol is produced as a racemic mixture. The structure is shown below.

Figure 1: Structure of alprenolol

i)	Circle the reasoning		responsible	for the	optical	activity	in a	alprenolol.	Explain	your
_										(2)
ii) —	What is a	racemic	mixture?							
										(2)
iii)	What kind		ıment is usec							
										 (2)

Question continues on next page.

(Total: 10 marks)

b) ⁻	The structural	formula	of 2,4-	dichloropentane	is shown	below.
-----------------	----------------	---------	---------	-----------------	----------	--------

Figure 2

i)	This compound also exhibits stereoisomerism but not all of the isomers are opticall active. Explain this statement.
	(3

- c) 1,2-dimethylcyclohexane exhibits another form of stereoisomerism.
 - i) Draw the structural formulae of the isomers in the space below. Name the compounds using the correct notation.

(Total: 13 marks)

	oservations. A silver mirror is observed at the bottom of a test-tube when butanal is reacted with
a)	ammoniacal silver nitrate.
	(2)
b)	An orange precipitate is obtained on addition of 2,4-DNPH to propanone.
	(2)
c)	A colourless vapour which condenses to a colourless liquid is formed when heating crystals of 1,2-benzenedicarboxylic acid.
	(2)
d)	A negative iodoform test is obtained when treating the product of the reaction between propanoyl chloride and benzene in presence of anhydrous AICl ₃ .
	(3)
e)	A cream coloured precipitate forms on addition of aqueous silver nitrate to bromomethyl benzene but not when adding the reagent to 1-bromo-2-methylbenzene.
	(3)

(Total: 12 marks)

BLANK PAGE

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

ADVANCED MATRICULATION LEVEL 2021 FIRST SESSION

SUBJECT: Chemistry

PAPER NUMBER: I

DATE: 30th June 2021

TIME: 9:00 p.m. to 12:05 p.m.

A Periodic Table is provided.

Answer TWO questions from each section and ANY other question.

SECTION A

1. This question is about sulfur and its oxides.

Explain **each** of these statements in detail, giving balanced chemical reactions when relevant.

- a) Sulfur dioxide is a toxic gas produced from the burning of fossil fuels, contributing to the formation of acid rain. (4)
- b) Sulfur dioxide can be converted to sulfuric(IV) acid which in turn can be converted to the sulfate(IV) salt. (4)
- c) Concentrated sulfuric acid(VI) has several uses. Describe **TWO** of them. (4)
- d) Hydrogen sulfide is a toxic weak dibasic acid that can also act as a reducing agent. (4)
- e) The sulfate(IV) ions exhibit electron delocalisation. Draw the structure of a sulfate(IV) ion and explain how bond properties can indicate electron delocalisation in the ion. (4)

(Total: 20 marks)

- 2. The endothermic decomposition of ammonia occurs at 400 °C. At this temperature, a homogeneous, dynamic equilibrium is established.
 - a) i) Explain the terms homogeneous, dynamic and equilibrium. (3)
 - ii) Deduce an expression for the equilibrium constant K_p . State the units of K_p . (4)
 - iii) State, giving explanations, the conditions of pressure and temperature under which a high equilibrium concentration of hydrogen would be obtained. (4)
 - iv) Discuss the effect that using a catalyst would have on the equilibrium yield and on the amount of hydrogen which could be produced in a given time. (3)
 - b) Consider the decomposition of ammonia gas at 400 °C. The total pressure of the equilibrium mixture containing ammonia, hydrogen and nitrogen is 200 atm. At equilibrium, the mixture contains 36% ammonia. Find the value of K_p . (6)

(Total: 20 marks)

3. This question is about the following compounds.

$$H_3$$
C CH_2 CH_2

- a) A and B can be distinguished by chemical means as well as by using a mass spectrometer. Explain this statement. Your answer should include the IUPAC name of the TWO compounds.
 (5)
- b) The same Grignard reagent can be used to synthesize C and D. Identify the Grignard reagent and explain how you would prepare it from readily available material in the lab.
 Include any precautions that need to be taken.
- c) If the necessary precautions are **not** taken in the preparation of a Grignard reagent, a hydrocarbon forms. Identify the hydrocarbon that would form from the Grignard reagent identified in part (b), and suggest a mechanism for this reaction. (4)
- d) Using the Grignard reagent identified in part (b), write equations for the preparation of **C** and D. In your answer include any other necessary reagents and conditions. (3)
- e) Explain, in detail, how you would distinguish between **A**, **C** and **D** via a chemical test. Give the relevant equations and observations where necessary. (3)

(Total: 20 marks)

4. This question is about reactions of benzene and its derivatives.

a) Outline the reagents and experimental conditions needed to convert benzene into nitrobenzene. In your answer, include the reason why this step was necessary to achieve the final product. (5)

- b) i) Give a systematic name for the final product of this scheme. (1)
 - ii) Identify the substances **E**, **F** and **G** by writing their structural formulae. (3)
 - iii) Explain how each of the following steps, namely nitrobenzene to **E**, **E** to **F**, and **G** to final product, can be brought about in the laboratory. (8)
- c) The conversion of **F** to **G** requires specific experimental conditions. Identify these conditions and the possible outcomes if they are **not** followed. (3)

(Total: 20 marks)

SECTION B

- 5. Hydrogen is the most abundant element in the universe. It is considered as a green fuel and can be produced by several processes.
 - a) Describe the process by which hydrogen is manufactured from the electrolysis of water.
 - b) There are three known isotopes of hydrogen. The least common isotopes are known as deuterium and tritium. Their atomic mass is twice and three times that of the most abundant respectively. Whilst deuterium is stable, tritium undergoes beta decay. Give the nuclear structure of each of the **THREE** isotopes and write an equation for the decay of tritium.
 - c) In the laboratory, hydrogen can be prepared by reacting a metal with an acid or by reacting aluminium with an alkali. Give balanced equations for both preparations. (4)
 - d) Sodium borohydride and lithium tetrahydroaluminate are two reducing agents used extensively in the preparation of several organic compounds.
 - i) Describe how lithium tetrahydroaluminate can be prepared in the laboratory. (4)
 - ii) Describe the bonding in lithium tetrahydroaluminate. (2)

(Total: 20 marks)

6. This question is about alkenes.

- a) Describe in detail, including the relevant equations, how ozonolysis can be used to distinguish between **H** and **I**. (5)
- b) On addition of HBr, compound **H**, gives two organic products, **K** and **L**. Identify the **TWO** products and give a detailed account of the mechanism through which they form. (8)

c) When 1 mole of compound **J** is reacted with 1 mole of bromine, two organic products, **M** and **N** are obtained. Deduce the structural formula of the products and give a detailed explanation as to how **each** of them forms. (7)

(Total: 20 marks)

7. a) The following initial rates of reaction were obtained for the hydrolysis of a bromoalkane RBr through the reaction:

$$RBr + OH^- \rightarrow ROH + Br^-$$

Experiment	Initial [RBr] / mol dm ⁻³	Initial [OH ⁻] / mol dm ⁻³	Initial rate of formation of ROH / 10 ⁻³ mol dm ⁻³ s ⁻¹
1	0.2	0.01	1.2
2	0.2	0.02	1.2
3	0.4	0.08	2.4

(i) Outline the method of initial rates.

- (3)
- (ii) Find the order of reaction with respect to RBr and the order of reaction with respect to OH⁻. Show your reasoning. (4)
- (iii) Use your answer to part (ii) and the data in the table to provide the rate expression and calculate the rate constant of the reaction. (4)
- (iv) Suggest a possible structure of the bromoalkane and propose a mechanism for the reaction, clearly indicating the rate determining step. (6)
- b) Explain what is meant by the half-life of a reaction and explain how the use of half-life can be used to confirm the rate expression obtained in part (a). (3)

(Total: 20 marks)

8. a) Consider the following half-reactions and associated E^e values at 298 K:

Fe²⁺ (aq) +2e⁻
$$\rightarrow$$
 Fe (s) $E^{\theta} = -0.41 \text{ V}$
Zn²⁺ (aq) +2e⁻ \rightarrow Zn (s) $E^{\theta} = -0.76 \text{ V}$

- (i) Draw a cell diagram for a galvanic cell consisting of the Fe²⁺/Fe and Zn²⁺/Zn electrodes using the conventional notation. Explain your reasoning. (5)
- (ii) Find the E^{θ} of the cell drawn in part a (i). (3)
- (iii) Write the redox reaction of the reaction that takes place in the galvanic cell and state your reasoning. (2)
- b) When sodium hydroxide ions are added to aqueous Zn²⁺ in a test tube, a white precipitate appears initially which disappears on further addition of the alkali. When sodium hydroxide is added to aqueous Fe²⁺, a green precipitate appears which does not dissolve on further addition of alkali. However, the precipitate darkens with time and turns brown at the top of the liquid in the test tube. Describe the chemistry behind these observations, providing chemical equations where possible. (10)

(Total: 20 marks)

Index No.:_____ AM06/III.21m

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

ADVANCED MATRICULATION LEVEL 2021 FIRST SESSION

SUBJECT: Chemistry

PAPER NUMBER: II

DATE: 6th July 2021

TIME: 4:00 p.m. to 5:35 p.m.

Directions to Candidates

- Write your index number in the space at the top left-hand corner of this page.
- Answer all questions. Write all your answers in this booklet. Drawings and graphical representations of data are to be made on the appropriate pages within this booklet.
- The marks allotted to parts of question are indicated.
- You are reminded of the necessity for good English and orderly presentation in your answers.
- In calculations you are advised to show all the steps in your working, giving your answer at each stage.
- The use of electronic calculators is permitted.
- A copy of a periodic table is on Page 12.

For examiners' use only:

Question	1	2	3	
Maximum	20	15	15	50
Score				

1. A bottle is labelled "hydrogen peroxide, 0.5 M". It is an old sample and its actual concentration is to be determined by titration with a standard potassium manganate(VII) solution of concentration 0.020 M.
a) A tenfold dilution is performed. The resulting solution is labelled H(dil), and will be used for the subsequent analysis. Describe in detail how this is carried out, indicating any precautions one should take to ensure accuracy.
(4)

is filled with the potassium manganate(VII) solution. The contents of each flask are acidified with $20~\rm cm^3$ of $2M$ sulfuric acid.
Describe how the burette, pipette and the flasks are treated to ensure a correct reading.
(4)
c) Describe and explain the colour changes that are observed as the end point is reached.
,
(3)

b) 25.0 cm³ aliquots of H(dil) are transferred to each of three conical flasks, whilst the burette

d) The following data was obtained. Complete the table with the correct titre readings.

	1	2	3
Final burette reading / cm ³	21.70	22.80	23.35
Initial burette reading / cm ³	0.00	1.50	2.00
Titre / cm³			

(3)

e) Hydrogen peroxide and potassium permanganate undergo a redox reaction as follows

$$5H_2O_2 + 6H^+ + 2KMnO_4 \longrightarrow 5O_2 + 2Mn^{2+} + 8H_2O + 2K^+$$

	approp nganate							
				 				(4)

f)	Calculate the concentration of the original solution.
	(2)

(Total: 20 marks)

Please turn the page

2.	The relative molecular mass of a white, crystalline solid known to be a monobasic organic acid, is to be determined with an acid-base titration method.
	a) 5.000 g of the solid are to be quantitatively dissolved in 250.0 cm³ of distilled water. Describe how this should be performed using an analytical balance and any equipment, including any essential precautions that should be taken to ensure accuracy.
	(4)

b) Three 25 cm³ aliquots of the solution are transferred to each of three conical flasks and titrated with 0.15 M of sodium hydroxide solution. Phenolphthalein is used as an indicator.
Describe and explain the colour change you would expect to observe as you approach the end-point.
(3)
c) As you titrate, you notice some drops of sodium hydroxide solution on the inner sides of the neck of the conical flask. Describe how you would ensure that these react with the contents of the flask in order to give a reliable titre value.
(2)

- d) The following data was obtained.
 - i) Complete the table with the correct titre values.

	1	2	3
Final burette reading / cm ³	27.80	29.80	28.35
Initial burette reading / cm ³	0.00	2.50	1.00
Titre / cm ³			

ii) Which values should be accepted and which should be discarded? Explain.	(2)
e) Use the titre values to obtain the relative molecular mass of the acid.	(1)
	(3)

(Total: 15 marks)

3. An insulated, polystyrene cup supported in a beaker is used as a simple calorimeter. A burette is used to accurately transfer 50.0 cm³ of a 0.20 M solution of copper(II) sulfate. The temperature is measured at regular intervals to ensure equilibrium.

3 g of zinc (i.e. excess) are added to the calorimeter at time = 3 minutes. The reaction mixture is stirred continually with the thermometer. Further temperature readings are taken at 30 second intervals.

The data obtained is summarised in the table below.

Time (Min)	Temperature (°C)
0.0	21.10
0.5	21.10
1.0	21.15
1.5	21.00
2.0	21.00
2.5	21.15
3.0	
3.5	31.00
4.0	30.95
4.5	30.90
5.0	30.80
5.5	30.65
6.0	30.60
6.5	30.55
7.0	30.40
7.5	30.30
8.0	30.25

a) Plot the data on the graph paper provided on the following page.

b) From your plot, determine the maximum rise in temperature.
(3)
c) Assuming that the reaction mixture has a specific heat capacity of 4.20 kJkg ⁻¹ K ⁻¹ , calculat the standard enthalpy change in kJ mol ⁻¹ for the reaction:
$Cu^{2+}{}_{(aq)}+\ Zn_{(s)} \to Zn^{2+}{}_{(aq)}\ +\ Cu_{(s)}$
(5

(Total: 15 marks)

PERIODIC TABLE: to be used during the MATSEC Examinations at SEC & Intermediate level CHEMISTRY

Redutive	Redaire))	Q = It) II _V - ¹ V - ¹	nol ⁻¹	6 500 Cı	Faraday constant = 96 500 Cmol ⁻¹	ay const	Farad Specif	5	Avogadro constant = 6.02×10^{23} Molar volume of a gas at th = 22.4 dm^3	Avogadro constant = 6.02 x 10 ²³	stant = (iro cons	voga olar
Reduirs	Reduitive															ation:	Inform	seful
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		103	102	101	100	99	98	97	96	95	94	93	92	91	90		
Redmire X Momine X Mo	Relative A Atomic A		\mathbf{Lr}	Vo	Md	\mathbf{Fm}	Es	$\mathbf{C}\mathbf{f}$	$\mathbf{B}\mathbf{k}$	Cm	Am	Pu	Np	U	Pa	Th		
Re	Relative A Atomic Marie Atomic At		260	259	258	257	252	251	247	247	243	244	237	238	231	232		
Redainc	Rejutive		71	70	69	68	67	66	65	64	63	62	61	60	59	58		
Redamire X Atomic X X Atomic X X X X X X X X X	Relative A Atomic X		Lu	Υb	Tm	\mathbf{Er}	H_0	Dy	Tb	Gd	Eu	Sm	Pm	Zd	\mathbf{Pr}	Ce		
Reduiry A Atomic Mg Atomic A Atomic Atom	Redaine A Atomic X X Atomic X		175	173	169	167	165	162	159	157	152	150	147	144	141	140		
Reduitiv A Atomic Mary Atomic A Atomic Atom	Retain A Atomic Mac Atomic																	
Relative Relative															89	88	87	
Relative X Atomic X A	Relative A Atomic X															Ac	Ra	Ŧ
In	Key Key III IV V VI VII Relative adminic adminic in the minary of the property of															227	226	23
Redamic X Aramic alamnic X Aramic alamnic X Aramic alamnic X Aramic X Aram	Relative A Atomic X		84	83	82	81	80	79	78	77	76	75	74	73	72	57	56	55
Relative	Retain Namic Na		Po	Bi	Pb]]	Hg	Au	Pt	\mathbf{Ir}	Os	Re	W	Ta	\mathbf{Hf}	La	Ba	ွှ
Relative Namica	Relative		209	209	207	204	201	197	195	192	190	186	184	181	178.5	139	137	33
Relative	Key Relative — A atomic mass Relative — A atomic in mass III IV V VI VII Relative — A atomic in mass Atomic X Atomic in mass To provide the provided in		52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
Relative Namber			Te	Sb	Sn	In	Cd	\mathbf{Ag}	Pd	Rh	Ru	Tc	Mo	P	\mathbf{Zr}	Y	\mathbf{Sr}	~
			128	122	119	115	112	108	106	103	101	99	96	93	91	89	88	85
Relative A Atomic Mg Re Co Ni Cu Zn Ga Ge As Se Br Cu Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Cu Ca Ca Ca Ca Ca Ca Ca	Key Relative — A atomic mass Atomic mass X Atomic Z — Number 111 11V V		34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Relative		Se	As	Ge	Ga	Zn	Cu	Z.	Co	\mathbf{Fe}	Mn	\mathbf{Cr}	V	Ti	Sc	Ca	X
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			79	75	73	70	65	63.5	59	59	56	55	52	51	48	45	40	39
Relative	III IV V VI VII		16	15	14	13											12	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	III IV V VI VII		S	P	S:	Al											$\mathbf{M}_{\mathbf{g}}$	Va
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	III IV V VI VII	J.	32	31	28	27											24	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	III IV V VI VII		∞	7	6	5											4	သ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	III IV V VI VI VI A atomic mass Z Number Number 11 12 14 16 19		0	Z	C	В											Be	<u>L</u> i
	III IV V VI VII		16	14	12	11				L							9	7
	III IV V VI VII									- Number	Z	mass						1
Key Key	Key III IV V VI VII	— E.									★ >	Relative - atomic						H —
Key Key	Key III IV V VI VII									_								_
		-	1	<	1 4	111					Key						F	-