## MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

## MATRICULATION EXAMINATION ADVANCED LEVEL SEPTEMBER 2015

SUBJECT: COMPUTING

PAPER NUMBER: I

**DATE:** 1<sup>st</sup> September 2015 **TIME:** 9.00 a.m. to 12.00 noon

## **Directions to Candidates**

- · Answer **ALL** questions.
- · Good English and orderly presentation are important.
- · All answers are to be written on the **booklet** provided.
- · The use of flowchart templates is permitted but calculators may NOT be used.

## **Section A**

- 1. *Recursion* can be a powerful and elegant programming technique for a variety of applications.
  - a. Explain recursion. Be sure to mention what the terms "base case" and "general case" mean in this context. [2 marks]
  - b. Consider the following Java method:

```
private static int a(int n) {
    if (n == 0)
        return(0);

if (n == 1)
        return(1);

return(a(n - 1) + a(n - 2));
}
```

What value would the following method call return?

```
a(3);
```

[3 marks]

- 2. In a programming language sometimes it is desirable to use *constants* in the code. The use of constants, instead of literal values, is considered good programming practice.
  - a. List two reasons why constants can be considered as a good programming practice.

[2 marks]

b. Look at the two definitions of PI below:

```
static double PI = 3.14159;
static final PI = 3.14159;
```

What is the difference between the "static" and "static final" definitions?

[3 marks]

#### AM 07/I.15s

## **Section B**

- 3. A binary floating-point number representation has an exponent x in the range  $-126 \le x \le 127$ 
  - a. Give an example of an operation that will cause an overflow (the exponent is too large). For the operation, write both the operand values and the operator, for example,  $2^5 + 2^{-3}$ .

[2 marks]

b. Give an example of an operation that will cause an underflow (the exponent is too small).

[3 marks]

4. Using a Karnaugh map, obtain a minimized expression for the following truth table.

| A | В | С | F          |
|---|---|---|------------|
| 0 | 0 | 0 | 1          |
| 0 | 0 | 1 | 1          |
| 0 | 1 | 0 | 0          |
| 0 | 1 | 1 | 0          |
| 1 | 0 | 0 | don't care |
| 1 | 0 | 1 | don't care |
| 1 | 1 | 0 | 0          |
| 1 | 1 | 1 | 1          |

[5 marks]

5. a. A peripheral device has two lines for the power supply and two lines for data transmission. Does the device use serial or parallel transmission? Give reasons for your answer.

[3 marks]

- b. **Name** the technology used in typical pen drives for:
  - i. data transmission;
  - ii. data storage.

[2 marks]

- 6. **Describe** how the following registers are used to fetch an instruction in the fetch/execute cycle:
  - a. Memory Address Register (MAR);
  - b. Memory Data Register (MDR);
  - c. Current Instruction Register (CIR);
  - d. Program Counter (PC);

[5 marks]

For the assembly program snippet below, **determine** the final value stored in register AX in hexadecimal. ; jump to label MAIN JMP MAIN DX, AX FN: VOM ; set DX equal to AX SHL AX, 1 ; shift AX to the left by 1 AX, DX ; add DX to AX ADD ; return from the subroutine RET ; set AX to the hex value 12 VOM AX, 012H MAIN: ; call the subroutine at FN CALL FN [5 marks] **Identify** THREE layers of the OSI model. [3 marks] 8. a. **Explain** briefly ONE of them. [2 marks] Wireless is one medium employed for data transmission. Mention THREE types of Wireless technologies; [3 marks] **Mention** TWO other transmission media. [2 marks] **Explain** what is a network topology. [2 marks] 10. a. **Mention** THREE examples. [3 marks] 11. a. What does JCL stand for? [2 marks] b. Briefly **explain** the use of JCL. [3 marks] 12. Give one-line definitions for the following: Deadlock; Interrupt; b. c. Block; d. Polling; Partitioning. [5 marks] Name the mathematical notation mostly used in computers to process arithmetic 13. a. statements. [1 mark] Describe how TWO particular data structures are used to obtain and evaluate the mathematical notation mentioned in a) above. [4 marks] 14. Briefly **explain** each of the following and **mention** what they are used for: Tokens: b. Linker; c. Parser; d. Semantic analyser; Syntax error. [5 marks]

## AM 07/I.15s

| 15. | a.  | Mention THREE main techniques employed to gather data during one of the phases of the          |                           |  |  |
|-----|-----|------------------------------------------------------------------------------------------------|---------------------------|--|--|
|     |     | Systems Development lifecycle.                                                                 | [3 marks]                 |  |  |
|     | b.  | Briefly <b>explain</b> ONE of the techniques mentioned in part a) above.                       | [2 marks]                 |  |  |
| 16. | a.  | Why is <b>modularity</b> commercially imperative for software maintenance?                     | [3 marks]                 |  |  |
|     | b.  | <b>Explain</b> ONE of the main categories of software maintenance.                             | [2 marks]                 |  |  |
| 17. | a.  | What is the main aim of the feasibility study during the systems development                   | life cycle?<br>[1 mark]   |  |  |
|     | b.  | Briefly <b>explain</b> the following feasibility aspects:                                      |                           |  |  |
|     |     | i. Technical;                                                                                  | [2 marks]                 |  |  |
|     |     | ii. Social.                                                                                    | [2 marks]                 |  |  |
| 18. | a.  | When designing a relational database it is important to bear in mind that norma                | lization of               |  |  |
|     |     | the tables must be carried out. Why is normalization important in a relational                 | l database                |  |  |
|     |     | system?                                                                                        | [3 marks]                 |  |  |
|     | b.  | <b>Explain</b> what is meant by a database in 3NF?                                             | [2 marks]                 |  |  |
| 19. | Exp | plain the differences between a primary key, secondary key and a foreign key.                  | [5 marks]                 |  |  |
| 20. | Bei | ng able to search through data structures is a very important feature.                         |                           |  |  |
|     | a.  | Describe both the linear and binary search algorithms.                                         | [3 Marks]                 |  |  |
|     | b.  | <b>Describe</b> a scenario where a linear search may be preferable to a binary search f items. | or a list of<br>[2 Marks] |  |  |
|     |     |                                                                                                |                           |  |  |

# MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

### MATRICULATION EXAMINATION ADVANCED LEVEL SEPTEMBER 2015

**SUBJECT:** COMPUTING

PAPER NUMBER:

**DATE:** 2<sup>nd</sup> September 2015 **TIME:** 9.00 a.m. to 12.00 noon

## **Directions to Candidates**

- · Answer any **FIVE** questions.
- · Good English and orderly presentation are important.
- · All answers are to be written on the **booklet** provided.
- · The use of **flowchart templates** is permitted but **calculators** may **NOT** be used.
- 1. a. A seven-segment display is used to display a four-bit BCD digit. The middle segment is to be switched on when the digit is 2, 3, 4, 5, 6, 8 or 9.
  - i. Draw a truth table for the function F that is true when the middle segment is to be switched on. For the inputs, indicate clearly which is the most significant bit.

[3 marks]

- ii. Draw a Karnaugh map of the function, and hence obtain a minimized Boolean expression for the function. [6 marks]
- iii. Draw a diagram of an implementation of the minimized function using logic gates.

[5 marks]

- b. A fixed-point two's-complement binary representation uses four bits for the integer part of a number and four bits for the fractional part. Write down the decimal value for the binary numbers
  - i. 1100.1100;
  - ii. 0011.0100. [4 marks]
- c. Describe one advantage of floating-point over fixed-point representations. [2 marks]

2. a. The following is an assembly program.

```
MOV AX, 0
                         ; set AX equal to 0
        MOV BX, 5
                         ; set BX equal to 5
        MOV CX, 3
                         ; set CX equal to 3
LOOP:
        MOV DX, BX
                         ; set DX equal to BX
        AND DX, 1
                         ; bitwise logic AND with 1
                         ; if DX is 0, jump to SKIP
        JZ
            SKIP
        ADD AX, CX
                         ; add CX to AX
SKIP:
        SHL CX, 1
                         ; shift CX to the left by 1
                         ; shift BX to the right by 1
        SHR BX, 1
                         ; if BX is not 0, jump to LOOP
        JNZ LOOP
```

- i. Determine the contents of the register AX at the end of the program. [8 marks]
- ii. Determine the final contents of the register AX if the initial value of CX was 4 instead of 3. [3 marks]
- iii. Deduce the arithmetic operation being performed by the program. [2 marks]
- b. i. Describe the difference between cache memory on the processor chip and main memory that is not on the processor chip. [3 marks]
  - ii. Identify which one of Static RAM (SRAM) and Dynamic RAM (DRAM) is typically used for cache memory and which one is used for main memory. Give reasons for your answer. [2 marks]
  - iii. Is flash RAM suitable for a computer's main memory? Give reasons for your answer.

[2 marks]

- 3. a. During the Systems Development Lifecycle (SDLC) a number of modelling tools are used, namely: Use Case Diagrams, Data Flow Diagrams (DFD's), Jackson Structured Programming (JSP) and Flowcharts. In which of the stages of the SDLC are each of the mentioned tools mainly used?
  [4 marks]
  - b. **Draw and name** the most common symbols used in both Data Flow Diagrams and Flowcharts and explain each symbol's usage within the model where it is used. [6 marks]
  - c. Write notes on the following:
    - i. modular design;
    - ii. black-box testing;
    - iii. predictive maintenance;
    - iv. program documentation;
    - v. change over techniques when implementing a new system. [10 marks]

- 4. a. Why is an interpreter, at times, preferred over a compiler during program development? [3 marks]
  - b. During the *lexical analysis* stage *lexemes* are converted to *tokens*. Explain the THREE terms in italics. [3 marks]
  - c. What is the function of the symbol table that is created during compilation? Outline the contents of the symbol table. [4 marks]
  - d. The following are some BNF definitions for a certain programming language.

```
<assign> ::= <var> = <exp>
<var> ::= K | L | M | N | O
<exp> ::= <var> | <exp> + <exp> | <exp> * <exp>
```

Describe the errors in the following assignment statements according to the definitions above:

- i. L = M + P
- ii. K = N L
- iii. N = K \* (L + M)
- iv. M = N \* L (K O)

[4 marks]

e. What type of error do the assignment statements above have?

[1 mark]

f. Extend or modify the BNF definitions above such that a valid variable may also consist of the listed uppercase letters (K, L, M, N or O) followed by a single digit, such as K9.

[5 marks]

- 5. Interrupt handling is an important function that the operating system performs.
  - a. What is its purpose?

[4 marks]

b. Explain TWO ways of handling interrupts.

[8 marks]

c. What is the relation to the DMA?

- [8 marks]
- 6. Computer networks are an important part of modern computer systems.
  - a. Define a computer network and give one real example;

[4 marks]

b. Identify and describe FOUR different computer networks.

[16 marks]

7. Consider the following code:

```
public abstract class Vehicle {
   private String colour;
   Vehicle()
                     { setColour("[NOT SPECIFIED]"); }
   Vehicle(String c) { setColour(c); }
   public String getColour() { return(colour); }
   public void setColour(String c) { colour = c; }
   abstract int wheelCount();
public class Motorcycle extends Vehicle {
   static final int NUM_MOTORCYCLE_WHEELS = 2;
   private boolean hasSidecar;
   public Motorcycle() {
         super();
         setHasSidecar(false);
   public Motorcycle(String c) {
         super(c);
         setHasSidecar(false);
   }
   public int wheelCount() { return(NUM_MOTORCYCLE_WHEELS); }
   public void setHasSidecar(boolean hsc) { hasSidecar = hsc; }
   public boolean getHasSideCar() { return(hasSidecar); }
public class Car extends Vehicle {
   static final int NUM_CAR_WHEELS = 4;
   private boolean rightHandDrive;
   public Car() {
         super();
         setRHD(false);
   public Car(String c) {
         super(c);
         setRHD(false);
   public Car(String c, boolean rhd) {
         super(c);
         setRHD(rhd);
   public int wheelCount() {
         return(NUM_CAR_WHEELS); }
   public void setRHD(boolean rhd) {
         rightHandDrive = rhd; }
   public boolean isRHD() {
         return(rightHandDrive); }
}
```

a. What is the output if the following code is executed?

b. If the Motorcycle(String n) constructor was updated as follows:

```
public Motorcycle(String c) {
         this();
}
```

- i. How would this affect the output from the program above?
- ii. Would it have any adverse affects?

[6 marks]

c. Assume we have reverted back to the original Motorcycle constructor method. Also assume the following method is present in the main driver file:

```
static void updateColour(Vehicle veh, String c) {
    veh.setColour(c);
}
```

i. What output would the following code produce?

```
Vehicle myV = new Motorcycle("Purple");
System.out.println(myV.getColour());
updateColour(myV, "Green");
System.out.println(myV.getColour());
```

[2 marks]

d. Good programming practice generally makes the act of programming, as well as future maintenance/modifications to code, much easier. Consider the following piece of code.

```
void foo(int w) {
    int i = 5;
    int j = w;
    int x;
    for (i = 5 ; i < 7 ; i++)
        x = x + i;
    bar(w + 5);
    return;</pre>
```

i. List FOUR of the problems associated with this method with respect to good programming practice. [8 marks]

## AM 07/II.15s

8. You have been hired to sort out the database issues at Bob's Birkirkara Pizzeria and Takeaway. Bob tried to make a database himself and has run into some issues. Bob's database consists of a single table/file as seen below. This file represents orders that have been phoned in.

-Bob Pace, 123 Main Street Valletta, 99698342, Pepperoni, Extra Olives, Extra Cheese, Doorbell does not work (knock)

-Wendy Wright, 45 Old Road Rabat, 93482349, Hawaiian

-Robert Grech, 6 Nazju Cortis Street Hamrun, 34024923. Capricciosa, Phone when close as I'll need to open gate

Upon inspecting the file it appears the format is as follows:

Name, Address, Phone, Type of Pizza ordered, Notes on the order (additional toppings, cooking directions or instructions on delivery)

## Assumptions you can make:

- The types of pizza offered are: Margherita, Pepperoni, Capricciosa, Hawaiian, Funghi and Mexicana
- Customers should be stored in their own table as this saves time for repeat business (person taking order would just verify address is the same).
- a. Create an entity relationship diagram showing the relationships between the tables needed to describe this database. Use the Crow's Foot notation. [10 marks]
- b. Convert the ER diagram created in a) into a relational database schema. Be sure to normalize (if needed) and make it clear what the primary and foreign keys are. [10 marks]