

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

INTERMEDIATE MATRICULATION LEVEL 2022 FIRST SESSION

SUE DAT		Chemistry 17 th May 2022 4:00 p.m. to 7:05 p.m.		
Us e Ide Rel	eful informatior al gas constant =	• 8.314 JK ⁻¹ mol ⁻¹ ses: Ag = 108, I = 127		
	CTION A swer ALL guest	ions in this section.		
1.	_	C is an alcohol with the for	mula CH3CH2CH2OH. Nar	ne alcohol C.
	(b) Draw the st	ructural formula of TWO i	somers of compound C.	(1)
				(2) (Total: 3 marks)
2.	Silver iodide is o	lescribed as a molecular c	ompound of formula AgI.	
	(a) Find the nui	mber of moles of molecule	s in 10 g of silver iodide.	
	(b) Find the nu	mber of molecules in 10 g	of silver iodide.	(1)
	(c) Find the per	centage by mass of silver	in silver iodide.	(1)

(Total: 3 marks)

3. The following table shows the mass numbers and the number of neutrons of four elements represented as W, X, Y and Z. (W, X, Y and Z are not the symbols of these elements.)

	W	Χ	Υ	Z
Mass number	39	40	40	42
Number of neutrons in the nucleus	20	20	21	22

Number of neutrons in the nucleus 20 20 21 22 (a) Write down the atomic numbers of the four elements W, X, Y and Z. (b) Which of the four elements are isotopes of each other? (c) Write down the electronic configuration of the element W using the spdf notation. (Total: 4 mark I. The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide (2) (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark)	11103	os munni)CI		33	 + 0	1 70	74		
(b) Which of the four elements are isotopes of each other? (c) Write down the electronic configuration of the element W using the spdf notation. (Total: 4 mark 1. The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark) (c) (Total: 4 mark)	Nun	nber of	neutrons in the nu	cleus	20	20	21	22		
(b) Which of the four elements are isotopes of each other? (c) Write down the electronic configuration of the element W using the spdf notation. (Total: 4 mark) The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Silicon dioxide Sulphur dioxide (2) (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark) (Total: 4 mark)	(a) Write	Write down the atomic numbers of the four elements W, X, Y and Z.								
(c) Write down the electronic configuration of the element W using the spdf notation. (Total: 4 mark The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide Culture of the oxides which have a high melting poin (Total: 4 mark). A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm									(
(c) Write down the electronic configuration of the element W using the spdf notation. (Total: 4 mark) The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark) (Total: 4 mark)	(b) Which	າ of the	four elements are	isotopes of eac	h other?				·	
(Total: 4 mark) The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide Sulphur dioxide (2) (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark). A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm									(
The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide (2) (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark). A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm	(c) Write	down t	:he electronic config	guration of the	element	W using	g the sp	df notatior		
The oxides of the period 3 elements exhibit different types of bonding: ionic, giant covaler and simple molecular. (a) Indicate the type of bonding in each of the following oxides. Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide (2) (b) From the above oxides, write the formulae of the oxides which have a high melting point (Total: 4 mark). A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm								(Total: 4	•	
Oxide Ionic Giant covalent Simple molecular Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide (2) (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm	and simpl	e mole	cular.				ing: ion	ic, giant co	ovaler	
Magnesium oxide Aluminium oxide Silicon dioxide Sulphur dioxide (b) From the above oxides, write the formulae of the oxides which have a high melting poir (Total: 4 mark A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm				T		1	Simple	molecular	\neg	
Aluminium oxide Silicon dioxide Sulphur dioxide (b) From the above oxides, write the formulae of the oxides which have a high melting poir (Total: 4 mark A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm		oxide	Torne	Glaric	covalent		Jimple i	Holeculai	\dashv	
Silicon dioxide Sulphur dioxide (2) (b) From the above oxides, write the formulae of the oxides which have a high melting poin (Total: 4 mark A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm									\exists	
(b) From the above oxides, write the formulae of the oxides which have a high melting poir (Total: 4 mark A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm	Silicon diox	(ide								
(Total: 4 mark A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cr	Sulphur dio	xide							(2	
. A gas syringe was used to find the relative molecular mass of a gas G. A volume of 250 cm	(b) From	the abo	ove oxides, write th	e formulae of th	ne oxides	which	have a h	nigh meltin	ng poir	
5 , 5								(Total: 4	mark	
	,	_				_				

(4) (Total: 4 marks)

6.	In reaction kinetics, it is estimated that a 10 K increase in temperature will roughly doubthe rate of a reaction.	le
	(a) Explain the above statement in terms of the collision theory.	
		(2)
	(b) In the space below, sketch a curve showing the distribution of molecular kinetic energy of a sample of gas at a temperature T. Label the axes and mark this curve A.	gies (1)
	(c) Using the same set of axes, sketch another curve to show the distribution a temperature of T+10K. Label this curve B.	nt a (1)
	(Total: 4 mar	ks)

7.	Consider the following equation: an oxide of copper reacts with sulphuric acid to form three products.								
	produc		s) + H ₂ S	O_4 (aq) \rightarrow Cu (s) + Cu	uSO ₄ (aq)	+H ₂ O (I)			
	(a) Ho	w does the oxidat	ion state	of copper in Cu₂O cha	ange when	Cu and CuSO ₄ are	e formed?		
							(1)		
	(b) Na	me the type of re	action tha	at occurs.					
							(1)		
		rite TWO ion-electectrons in the reac		ations (ionic half-equ	ations) to	show the loss an	d gain of		
							(2)		
						(Total: 4	4 marks)		
8. M		the following table		eactions. whether reaction occur Reaction occurs		not occur for each			
	Р	Br ₂ (aq) + Na(l (aq)						
	Q	Cl ₂ (aq) + NaE	r (aq)				(1)		
	(b) Ex	plain why the mix	tures in p	oart (a) react or do no	ot react.				
							(2)		
	(c) Wr	rite a balanced equ	uation for	the reactions that oc	cur.				
							(1)		
						(Total: 4	4 marks)		

SECTION B

Answer ALL questions in this section.

9.	(a)	Polyethene is an example of a non-biodegradable polymer. It is manufactured in t forms: low density and high density polyethene.	wo
		(i) Write an equation to represent the formation of polyethene from its monomer.	
			(2)
		(ii) What is the main structural difference in the two abovementioned forms polyethene?	of
			(1)
	(b)	A different polymerisation reaction resulted in the formation of one product S which we the polymer. Polymer S has the formula: $-[-CH_2-CHCl-]-n$.	vas
		(i) Name the monomer in this polymerisation reaction.	
			(1)
		(ii) Name the polymer S.	(1)
		(iii) Name the type of polymerisation involved in the formation of polymer S.	(1)
			(1)
		(Tataly 6 mark	ر م،

(Total: 6 marks)

10. (a) In laboratory and industrial processes, the products of a reaction are separated or isolated. From the following list, select the suitable separation technique in each case in the following table: filtration, simple distillation, fractional distillation, sublimation, crystallisation, chromatography, solvent extraction.

	Substance to be isolated/extracted	Technique
(i)	The isolation of an alcohol from a mixture of an alcohol	·
	and water. The boiling point of the alcohol is 85 °C.	
(ii)	The isolation of iodine from a mixture containing	
	aqueous iodine and dissolved inorganic reagents which	
	were used for its preparation. (Iodine changes directly	
	from the gaseous state to the solid state.)	
(iii)	A solute is transferred between two immiscible	
	solvents according to its solubility in each solvent.	
(iv)	The production of pure water from salt water.	
(v)	The isolation of the precipitate barium sulfate, formed	
	when an aqueous solution of barium chloride is added	
	to a solution of sodium sulfate.	
(vi)	An impure solid is added to a small volume of hot	
	solvent in which it dissolves. On cooling, the solid pure	
	solid is retrieved.	

(b)	•	er chromatography is used to separate a mixture of compounds into individ pounds.	(3 dual
	(i)	Explain the principle of the chromatographic process.	
			(2)
	(ii)	How can this technique be used to test whether a substance is pure or impure?)
			(1)

(Total: 6 marks)

11. (a) Explain the term saturated vapour pressure.
(2
(b) The saturated vapour pressure of water increases with an increase in temperature Discuss.
(2)
(c) In view of your answer to part (b), and applying Le Chatelier's principle, explain whether the vaporisation process is an endothermic or exothermic process.
(2)
(2)

(Total: 6 marks)

12.		Dinitrogen tetroxide (N_2O_4), a colourless gas, exists in equilibrium with nitrogen dioxide (NO_2), a dark brown gas.								
		$N_2O_4(g) \rightleftharpoons 2NO_2(g)$								
	(a)	Write an expression for the equilibrium constant K_c . Write the units for K_c .								
		(2)								
	(b)	The concentration of nitrogen dioxide at a particular temperature was 1.15 x 10^{-3} moldm ⁻³ . What was the equilibrium concentration of dinitrogen tetroxide? The value of $K_c = 1.06 \times 10^{-5}$ moldm ⁻³ at this temperature.								
		(2)								
	(c)	A syringe was filled with a mixture of dinitrogen tetroxide and nitrogen dioxide. The colour of the mixture was a shade of brown.								
		(i) What would you observe if the plunger of the syringe is pushed down to reduce the volume of the syringe?								
		(1)								
		(ii) Explain the observation in part (c)(i).								
		(1)								
		(Total: 6 marks)								
		(Total: 6 marks)								

13.	(a)	(i)	Define a Bronsted-Lowry acid.	(1)
		(ii)	Identify the reactants in the following equation as an acid or a base. $H_2O + NH_3 \rightleftharpoons NH_4{}^++ OH^-$	
		(iii)	Identify the conjugate acid and the conjugate base in the above reaction.	(1)
	(b)	(i)	What is an amphoteric substance?	(1)
		(ii)	One of the four components in the reaction in part (a)(ii) has an amphoteric na Identify this amphoteric substance.	ture.
		(iii)	Write another equation, apart from the one in part (a)(ii), to show the amphonature of this substance.	
			(Total: 6 ma	(1)

(Total: 6 marks)

SECTION C

Answer any TWO questions from this section. Write your answers on the lined pages of this booklet.

- 14. This question is about energetics.
 - (a) The values of the standard enthalpy change of combustion of C (s, graphite), $H_2(g)$ and $CH_4(g)$ are -394 kJmol⁻¹, -286 kJmol⁻¹ and -890 kJmol⁻¹ respectively.
 - (i) What are the standard conditions for enthalpy changes?

(2)

(ii) Define the standard enthalpy of combustion.

- (2½)
- (iii) Write the equations that correspond to the standard enthalpy changes of combustion of graphite, hydrogen and methane. (5)
- (iv) Define the standard enthalpy of formation. (2½)
- (v) Write the equation that correspond to the standard enthalpy change of formation of methane. (2)
- (b) Considering the information given in part (a), draw a Hess' cycle and calculate the standard enthalpy change of formation of methane. (6)

(Total: 20 marks)

- 15. This question is about bonding.
 - Explain each of the following statements.
 - (a) Sodium chloride is a compound that is ionically bonded and has a lattice structure. Include diagrams to illustrate your answer where necessary. (4)
 - (b) There is covalent bonding in the molecules of hydrogen, oxygen and nitrogen; they are examples of molecules with single and multiple bonds. Use dot-and-cross diagrams to illustrate your answer. (6)
 - (c) Dative covalent (or coordinate) bonds and network covalent bonding in macromolecules are examples of covalent bonding. Illustrate your answer with a suitable example in each case.
 (4)
 - (d) The octet rule can be used to predict formulae. There are exceptions to the octet rule, as in the case of electron deficient molecules and the 'octet expansion'. Illustrate your answer by suitable examples.
 (6)

(Total: 20 marks)

- 16. This question is about organic compounds.
 - Write short notes about each of the following statements. Include chemical equations, conditions and any observations wherever necessary.
 - (a) Apart from one particular class, organic compounds contain a functional group. They are classified into homologous series. One homologous series contains compounds that do **not** have a functional group. (6)
 - (b) There are different types of structural isomerism. Illustrate with suitable examples. (7
 - (c) Both ethers and alkenes can be formed from alcohols.

(4) (3)

(d) Carboxylic acids undergo esterification.

(Total: 20 marks)

17. This question involves volumetric analysis.

An acid-base titration was carried out with sulfuric acid and sodium hydroxide solution. The acid was placed in the burette while the sodium hydroxide solution was placed in the conical flask. A 25 cm³ bulb pipette was used.

- (a) Outline the steps for the procedure of carrying out an acid-base titration. Start with the procedures to be followed for washing the glassware to be used. (10)
- (b) The sulfuric acid solution, of unknown concentration, was titrated against 0.25 moldm⁻³ sodium hydroxide solution. The results are reported in the table below.

	Titration 1	Titration 2	Titration 3	Titration 4
Final volume (cm ³)	24.2	47.8	48.2	24.1
Initial volume (cm ³)	0.0	24.1	24.2	0.3
Titre value (cm ³)				

 (i) Find the titre value for each of the four titrations. (2) (ii) One considers concordant titre values to proceed with the calculation. Explain what is meant by concordant titre values and identify the titrations which provide concordant values and hence calculate the average titre. (2) (iii) Write a balanced equation, including state symbols, for the above acid-base reaction. (2) (iv) Hence, calculate the concentration of the sulfuric acid solution. (4) (Total: 20 marks)

PERIODIC TABLE

					_			_		_		_		_			_			
VIII	4 He	1	20	Ne	10	40	Ar	18	84	K	36	131	Xe	54	222	Rn	98			
VII			19	¥	6	35.5	ひ	17	80	Br	35	127	Ι	53	210	At	85			
VI			16	0	8	32	S	16	79	Se	34	128	Te	52	209	Po	84			
>			14	Z	7	31	Д	15	75	As	33	122	Sb	51	209	Bi	83			
V			12	U	9	28	Si	14	73	g	32	119	Sn	20	207	Pb	82			
H			11	B	2	27	A	13	70	Ga	31	115	п	49	204	E	81			
									65	Zn	30	112	Cg	48	201	Hg	80			
									63.5	Cn	29	108	Ag	47	197	Au	79			
									59	Z	28	106	Pd	46	195	Pt	78			
	tomic	Number							59	ပိ	27	103	Rh	45	192	II.	77			
Key	< ×	\top							56	Fe	26	101	Ru	44	190	Os	92			
	Relative atomic	ıass							55	Mn	25	66	Te	43	186	Re	75			
	B	£							52	Ċ	24	96	Mo	42	184	×	74			
									-			_			_	Ta				
									-							Ht		ä		
									\vdash	-		_			_	La	_	127	4c	68
								_	-			-			_					
II			6	Be	4	24	Mg	12	40	Ca	20	88	S	38	137	Ba	26	226	Ra	88
I	- H	-	7	Ľ	3	23	Na	11	39	X	19	85	Rb	37	133	C	. 55	223	Fr	87

175	Lu	71	. 760	L	103
173	Λ	70	259	No No	102
169	Tm	69	258	Md	101
167	Er	89	257	Fm	100
165	Ho	29	252	Es	66
162	Dy	99	251	Ç	86
159	·Tb	9	247	Bk	97
157	Gd	64	247	Cm	96
152	Eu	63	243	Am	95
150	Sm	62	244	Pu	94
147	Pm	61	237	dN	93
144	PN	09	238	n	92
141	Pr	59	231	Pa	91
140	ů	28	232	Th	90