MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

MATRICULATION EXAMINATION INTERMEDIATE LEVEL SEPTEMBER 2013

SUBJECT:	PHILOSOPHY
DATE:	6th September 2013
TIME:	4 00 p m to 7 00 p m

Directions to Candidates

Answer **THREE** questions in all, **ONE** from **EACH** section. Questions carry equal marks.

Section A: Logic

- 1. (a) Describe, in not more than 10 lines, how a complex proposition is composed.
 - (b) Express the following propositions symbolically:
 - (i) Iana goes to the gym on Monday or Thursday.
 - (ii) If Iana goes to the gym on Monday, she does not go on Thursday.
 - (iii) Iana goes to the gym on Monday only if she does not go on Thursday.
 - (iv) Iana goes to the gym on Monday if and only if she goes on Thursday.
 - (c) (i) Translate symbolically the following argument and, by using truth-tables, check whether the implication involved is valid.

If Tessa passed her exam, Luke did too.

Tessa passed her exam.

Therefore Luke did too.

- (ii) Which standard application form is involved in the argument in (c) (i) above?
- (d) Fill in the blanks:
 - (i) \longrightarrow >< A \wedge B is valid (commutativity of \wedge).
 - (ii) $_$ >< A \vee (B \vee C) is valid (associativity of \vee).
 - (iii) \longrightarrow >< \neg A v \neg B is valid (de Morgan).
 - (iv) $_$ ____, $B < C \Rightarrow$ $_$ ___ is admissible (transitivity of <).
- (e) (i) Complete the following implication:

$$A \vee (B \wedge C) <$$
 _____ (distributivity of \vee over \wedge).

- (ii) State the duality principle.
- (iii) Dualise the implication in (e)(i) above.
- (iv) Use the duality principle only to find out whether the answer to (e)(iii) is valid.
- (f) (i) Write down the truth-tables of the formulae which correspond to:
 - (I) x and y are either both false or both true.
 - (II) if x is false then y is true and vice versa.
 - (ii) For each of the truth-tables in (f)(i) above, write down a formula which contains only one junctor.
 - (iii) What must be done to either one of the formulae in (f)(ii) above so that they will become equivalent to each other?
- (g) For each of the following formulae write down one interpretation which is a model:
 - (i) $\neg (x \lor y)$
 - (ii) $\neg x \lor \neg y$

- 2. (a) What is meant by saying that the implication A < B is valid?
 - (b) Express the following propositions symbolically:
 - (i) Gail or Michael went to dancing classes.
 - (ii) If Michael went to dancing classes, Gail went too.
 - (iii) Both Gail and Michael went to dancing classes.
 - (iv) It is not the case that neither Gail nor Michael went to dancing classes.
 - (c) Refer to the following statement:

If Alex is at the party then Berta and Lara are not. Identify:

- (i) a nominator
- (ii) a junctor
- (iii) an elementary proposition
- (iv) a complex proposition
- (d) By means of truth-tables find out whether:
 - (i) v is commutative
 - (ii) \rightarrow is associative
- (e) (i) Fill in the blanks: $A \rightarrow (B \lor C) ><$ _____ (\rightarrow is distributive over \lor) $A \rightarrow (B \lor C) ><$ _____ (transportation)
- (ii) Use one of the above equivalences to simplify the proposition:

 If Tara has a holiday then she will play rugby, or if Tara has a holiday, she will play football.

(An English sentence which does not contain logical symbols is expected.)

(f) The truth-tables of the formulae W, X, Y, Z are given underneath.

a	b	c	W	X	Y	Z
T	T	T	T	T	T	T
T	T	F	F	F	T	T
T	F	T	T	T	T	T
T	F	F	F	F	T	F
F	T	T	F	F	F	F
F	T	F	T	F	T	T
F	F	T	F	F	F	F
F	F	F	T	T	T	T

Arrange the four formulae in order such that moving from left to right each formula would imply the next.

(g) Write down a **formula** constructed **only** out of the primary formulae a and b and the junctors ¬ and ∧ and whose truth table is:

a	b	formula
T	T	F
T	F	T
F	T	F
F	F	F

IM25.13s

Section B: Ethics

- 3. When, if at all, is the withholding or withdrawing of life-sustaining treatment morally justified?
- 4. Discuss the philosophical basis of our moral responsibilities towards future generations.

Section C: History of Philosophy

- 5. What distinguishes the works of the early Greek philosophers from those of the mythologists who precede them?
 - X'jagħżel ix-xogħlijiet tal-filosfi Griegi bikrin minn dawk tal-mitoloġisti li ġew qabilhom?
- 6. What relation does Plato see between the just individual and a just society?
 - X'rabta jara Platun bejn il-ġustizzja bħala virtù tal-individwu u l-ġustizzja bħala kwalità tas-socjetà?