Index Number:_____ SEAC03/s2.23s

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION APPLIED CERTIFICATE LEVEL 2023 SUPPLEMENTARY SESSION

SUBJECT: Engineering Technology

PAPER NUMBER: Synoptic – Unit 2
DATE: 2nd November 2023
TIME: 5:30 p.m. to 7:35 p.m.

THIS PAPER SHOULD BE RETURNED TO THE INVIGILATOR AFTER THE EXAMINATION.

For examiners' use only:

Question	1	2	3	4	5	6	Total
Score							
Maximum	6	8	8	8	8	12	50

Answer **ALL** questions in the space provided. You may answer either in English or in Maltese.

Scenario

- A company needs to assess the employed technicians in terms of mechanical knowledge.
- The following test is distributed to all technicians.

Question 1	K-1 (6 marks)
a. List the TWO different measuring systems used in thread charts.	
Measuring system 1:	(1)
Measuring system 2:	(1)
b. Outline the following TWO terms used when dealing with threads.	
Pitch:	
	(1)
Diameter:	(4)

c. Table 1 below shows part of a thread chart. All the values in the table are in millimeters. Interpret Table 1 to select the correct tap/die to manufacture M17 bolt and nut. Give your answers to three decimal points.

Table 1: Part of thread chart

NOM. THREAD DIA.	PITCH P	MAJOR DIA. D d	PITCH DIA. D2 d2	MINOR DIA. D1 d1	NOM. THREAD DIA.	PITCH P	MAJOR DIA. D d	PITCH DIA. D2 d2	MINOR DIA. D1 d1	NOM. THREAD DIA.	PITCH P	MAJOR DIA. D d	PITCH DIA. D2 d2	MINOR DIA. D1 d1
M 0.3	0.08	0.300	0.248038	0.213397	M 17	1.5	17.000	16.025721	15.376202		5		48.752405	46.587341
M 0.35	0.09	0.350	0.291543	0.252572	IVI 17	1	17.000	16.350481	15.917468		4		49.401924	47.669873
M 0.4	0.1	0.400	0.335048	0.291747		2.5		16.376202	15.293671	M 52	3	52.000	50.051443	48.752405
M 0.45	0.1	0.450	0.385048	0.341747	M18	2	18.000	16.700962	15.834936		2		50.700962	49.834936
M 0.5	0.125	0.500	0.418810	0.364684	IVITO	1.5	10.000	17.025721	16.376202		1.5		51.025721	50.376202
M 0.55	0.125	0.550	0.468810	0.414684		1		17.350481	16.917468		4		52.401924	50.669873
M 0.6	0.123	0.600	0.502572	0.437620		2.5		18.376202	17.293671	M 55	3	55.000	53.051443	51.752405
		0.000			M 20	2	20,000	18.700962	17.834936	IVI 55	2	33.000	53.700962	52.834936
M 0.7	0.175	0.700	0.586334	0.510557	IVI 20	1.5	20.000	19.025721	18.376202		1.5	1	54.025721	53.376202
8.0 M	0.2	0.800	0.670096	0.583494		1	1	19.350481	18.917468		5.5		52.427645	50.046075
M 0.9	0.225	0.900	0.753858	0.656430		2.5		20.376202	19.293671		4		53.401924	51.669873
M 1	0.25	1.000	0.837620	0.729367	M 22	2	22.000	20.700962	19.834936	M 56	3	56.000	54.051443	52.752405
IVI	0.2	1.000	0.870096	0.783494	IVI ZZ	1.5	22.000	21.025721	20.376202		2		54.700962	53.834936

(Source: https://www.slideshare.net/ClimenteAlin/filete-basic-dimensions-isor-7241968)

Pitch Bolt:		
Pitch Nut:		_
Major Diameter: _		
Minor Diameter Bolt: _		<u></u>
Minor Diameter Nut: _	 (2)	<u> </u>

Question 2 K-3 (8 marks)

a. Identify the TWO types of structures given in Table 2.

Trame Solid Stiell		frame	solid	shell	
--------------------	--	-------	-------	-------	--

Table 2: Different types of structures

	Table 2: Different types of structures						
	Structure	Type of Structure					
i.	(Source: www.seekpng.com)	(1)					
ii.	(Source: http://atlas-content-cdn.pixelsquid.com/)	(1)					

This question continues on next page.

b. Figure 1 shows a shop sign installed with a vertical wall. Label parts A and B in the structure shown in Figure 1.

Figure 1: Structure holding a shop sign (Source: https://slideplayer.com/slide/4774105/)

(2)

			-
 	 	 	-
			-
			-
	 		-
 	 		-
 	 		-
 		 	_
			_
	 	 	-
 	 	 	-
 	 	 	-

Question 3	K-4 (8 marks)
a. Name FOUR different types of gears.	
Type 1:	(0.5)
Type 2:	(0.5)
Type 3:	(0.5)
Type 4:	(0.5)
b. Outline the function of the driver and the driven p	part in a gear system.
Driver:	
	(1)
Driven:	
	(1)
Figure 2: Gear (Source: https://w7.	r system .pngwing.com/)

Question 4 K-7 (8 marks)

a. Label the following crank assemblies and their parts.

b. Determine the reciprocating distance of a crank assembly in Figure 3, if the distance between the centre of the main journal of the flywheel and the crank pin is 54 cm.

Figure 3: Steam crank assembly (Source: study.com)

(2)

c. Describe the change in motion of the crank assembly of a combustion engine, shown in Figure 4.

Figure 4: Crank assembly of combustion engine (Source: ars.els-cdn.com)

_
 _
 _
 _
 _
 _
[8
¹⁾

Please turn the page.

Question 5 K-8 (8 marks)

a. Label the lever classes given in Table 3.

Table 3: Lever Classes

b. Identify the **TWO** different types of linkages in the lever systems shown in Table 4.

c. Describe the output of the linkage systems A and B given in Figure 5.

Please turn the page.

Question 6 C-2 (12 marks)

a. Determine the gear ratio of the following gear system, in Table 5. Show all your working.

Table 5: Gear system setup					
Driver: 120 teeth					
Driven: 60 teeth					
	(4)				

b. Describe the gear system given in Figure 6 in terms of diameter and pitch.

Figure 6: Gear system

				(4)	

- c. The gear system shown in Figure 7 represents the gear system in a conveyor belt used in a supermarket.
 - Gear A is the driver gear, connected to a motor (undergoing rotary motion).
 - A conveyor belt, with toothed belt is geared with gear C. Table 6 includes the relative information of the gears.

Figure 7

Table 6: Gear system speed and direction

	Gear A	Gear B	Gear C
Speed (rpm)	225	150	25
Direction	Clockwise	Anti-Clockwise	Clockwise

Justify the appropriate design of this gear system in view of the given information.

	_
	12
(4)	

Blank Page