Index Number: _____ SEAC03/s2.21s

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SECONDARY EDUCATION APPLIED CERTIFICATE LEVEL 2021 SUPPLEMENTARY SESSION

SUBJECT: Engineering Technology

PAPER NUMBER: Synoptic – Unit 2
DATE: 3rd November 2021
TIME: 4:00 p.m. to 6:05 p.m.

THIS PAPER SHOULD BE RETURNED TO THE INVIGILATOR AFTER THE EXAMINATION.

Answer **ALL** questions in the space provided. You may answer either in English or in Maltese.

Scenario

A technician working with a manufacturing company is required to answer the following questions on threads, pulleys, gears and ratchets, cam and cranks and lever systems.

Question 1	K-1 (6 marks)
a. List the TWO different measuring systems used in thread charts.	
Measuring system 1:	(1)
Measuring system 2:	(1)
o. Figure 1 demonstrates an example of a bolt.	
Figure 1: Bolt Source: https://www.dreamstime.com	
Outline the following TWO terms used when dealing with threads.	
Pitch:	
	(1)
Diameter:	

____(1)

c. Look at Table 1 below to answer the following questions.

Table 1: Thread chart

Table 1: Tillead Cliart							
Size - Nominal Diameter (mm)	Pitch ¹⁾ (mm)	Tap Drill <i>(mm)</i>					
M 1.6	0.35	1.25					
M 2	0.40	1.60					
M 2.5	0.45	2.00					
M 3	0.50	2.50					
M 3.5	0.60	2.90					
M 4	0.70	3.30					
M 5	0.80	4.20					
M 6	1.00	5.00					
M 8	1.25	6.80					
M 10	1.50	8.50					
M 12	1.75	10.20					
M 14	2.00	12.00					
M 16	2.00	14.00					
M 20	2.50	17.50					

i. Interpret information from Table 1 above to select the correct tap drill size in milli-meters for the manufacturing of an inside thread for an M4 Bolt.

_____ (1)

ii. If the following tap drill sizes in Table 2 are available, which tap drill size would you use for the task in Question 1ci.

Table 2: Tap sizes

Tap sizes									
1	1.5	2	2.5	3	3.5	4	4.5	5	5.5

_____(1)

Please turn the page.

Question 2	K-4 (8 marks)
a. Name FOUR different types of gears.	
Type 1:	(0.5)
Type 2:	(0.5)
Type 3:	(0.5)
Type 4:	(0.5)
b. Outline the function of the driver and driven gears in Figure 2 below.	
DRIVER DRIVEN Figure 2: Gears	
Source: https://www.shutterstock.com/	
Driver:	
	(1)
Driven:	

_____(1)

c. Figure 3 shows a gear system. Describe the outcome of the **TWO** smallest gears (driven) in term of **direction**, if the largest gear (driver) will be rotating **clockwise**.

Figure 3: Gear system
Source: https://www.shutterstock.com

			(4)
 	 	 	(4)

Question 3 K-6 (8 marks)

a. Name the different parts of the cam and follower system given in Figure 4.

Figure 4: Cam and follower system 1

Source: shorturl.at/dCKRT

(2)

This question continues on next page.

b. Identify the cams and followers in different systems given in Table 3 below. Use terms from the ones provided below.

roller	drop	knife	plate	heart	eccentric
	Tabl	e 3: Cam and	d follower sy	stems	
i.	ii.			iii.	iv.
Source: https://www.technologyst	Source https://www.t		https://wv	Fource:	Source: https://www.technologyst
udent.com/	udent.c	com/	ude	ent.com/	udent.com/
					(2)

c. Describe the motions in the following cam and follower system when the crank is rotated.

Figure 5: Cam and follower system 2 Source: shorturl.at/mALU0

		(4

Question 4 K-2 (8 marks)

a. Identify the **TWO** types of pulleys given in Table 4 below.

Table 4: Pulleys

b. Label the different parts in the pulley and belt system shown in the Figure 6 below.

Figure 6: Pulley and belt system Source: https://ccea.org.uk/

c. Describe the outcome of the compound pulley system shown in Figure 7, when the handle is turned in terms of driver pulley, driven pulley and load.

Figure 7: Compound pulley system Source: https://www.pinterest.com/

			(4)
			(4)

Question 5 K-8 (8 marks)

a. Label the lever classes given in Table 5.

Table 5: Level Classes

	Lever Class	Lever Systems (E – Effort, L – Load, F – Fulcrum)
i.	(1)	<u>Е</u>

b. Identify the **TWO** different types of linkages in the lever systems shown in Figure 8 and Figure 9. Use words from the ones provided below.

Figure 9: Lever system 2

c. Describe the output of the following linkage systems.

		(4)
	 	(¬.

Question 6 C-1 (12 marks)

- a. Figure 12 below, shows a crane structure.
 - i. Outline the force that the wire rope is having due to the load.

Figure 12: Crane structure

_____(2)

ii.	Outline the force that the load and counterweight are having on the arm.	
		(2)

b. Figure 13 shows two pulley setups. Explain F1 and F2 when lifting the 100N load.

Figure 13: Pulley Setup 2 Source: shorturl.at/dftwL

 (4)

This question continues on next page.

c. Determine the effort force F in Newtons, if the mass m in Figure 14 is 4kg. Show all workings.

Figure 14: Pulley Setup
Source: https://www.real-world-physics-problems.com/pulley-problems.html

(4)
(4