
1

COMPUTING AM 07

SYLLABUS

AM Syllabus (2015): Computing

AM SYLLABUS (2015)

2

Computing AM06 (Available in September)
Syllabus Paper 1(3 hrs) + Paper II(3 hrs) + Paper III(Project)

1. INTRODUCTION

This MATSEC Advanced level Computing Syllabus has been prepared and compiled in line with previous
syllabi, latest Computing related developments and space for future syllabi to add and enhance the contents. In
line with the objectives clearly set in the previous version of this syllabus, the programming language that is to
be used throughout this syllabus is to be “Java”. This programming language will be used in every aspect of this
syllabus wherever the use of a programming language is required, including the implementation of the project.

It is also stressed that all theoretical treatment of topics should be adequately accompanied by practical (real-
world) examples when and wherever applicable.

The nature of the project and what it aims to exercise has also been amended in this syllabus. The project now
carries 20% of the global score for this subject and is primarily intended to consolidate and assess the freshly
acquired programming and logical-analytical skills of candidates, rather than the abstract-analytical, design,
project management skills, and software engineering rationale in general, which can be better assimilated in
later stages of the educational process, when it is felt that candidates’ thought processes have reached higher
levels of maturity.

Candidates are expected to have followed the Computer Science stream at secondary level and have progressed
on to the SEC level Computer Studies thereby acquiring sound background knowledge of the history of
Computing, current and future trends, as well as the sector-specific and social applications of Information
Technology.

This syllabus is ideal for those students who wish to deepen their understanding of various aspects of the
Computing discipline possibly with an eye to pursuing any undergraduate degree programme through a
fundamental treatment of the technical aspects of larger field of ICT.

This document is organized as follows. The next section briefly underlines the contents of the examination
itself while Syllabus details are described in detail in Section 3. Section 4 lists recommended texts and
reference books that Computing educators can make use of to assist their students. Finally, detailed information
about the practical project is expanded in Section 5.

2. EXAMINATION

The examination shall consist of three parts, namely, two written papers each of three hours duration and a
project. The overall grade will be based on an overall aggregate score, as indicated by the percentages of the
various assessable components of this examination, and students must obtain a minimum mark in each part of
the examination, to be established by the Markers’ panel.

Paper I (100 marks) shall consist of twenty short compulsory questions in all. These questions will be spread
over two sections. Section A and Section B. Section A shall exclusively contain one or more simple questions
that will directly exercise the acquired programming knowledge of the candidate. Section B shall contain
questions from any part of the syllabus and that require short and to the point answers each worth 5 marks.
Paper I carries 40% of the final (total) examination score.

Paper II (100 marks) shall consist of eight long questions of which candidates are expected to answer five. Each
question carries 20 marks and students are expected to understand precisely what is being asked and
demonstrate understanding by answering in some depth. Paper II carries 40% of the final (total) examination
score.

Paper III (100 marks) is a project that is expected to take up about three months of the candidates’ study
programme in order to clearly test and demonstrate the range of logical and programming skills they have
acquired and possess. Paper III (The Project) carries 20% of the final (total) examination score.

Note Regarding use of calculators:

Calculators may NOT be used n any part of this examination.

AM Syllabus (2015): Computing

3

3. SYLLABUS

Module 1: Digital Logic

Objectives
Students should be able to

 understand the basics behind binary logic
 make use, understand and draw truth tables for logic expressions
 draw logic circuits from Boolean expressions
 apply fundamental Boolean algebra rules and/or Karnaugh maps to simplify simple Boolean

expressions
 Understand the use of basic logic theorems to build practical and fundamental logic circuitry

Data Representations Decimal, Binary and Hexadecimal number systems
Converting numbers from one number system to another
The use of sign and magnitude and two’s complement method to represent positive and
negative numbers
The interpretation of different numerical representation formats:

 unsigned whole numbers
 unsigned numbers with fractions
 signed integer fixed point representation
 signed fractional fixed point representation
 signed floating-point representation

The range of fixed-point & floating point format representation
Overflow and underflow
The use of codes to define a character set including ASCII, Unicode

Logic Gates Binary logic as a mathematical way of manipulating and processing binary information
Basic logic operators:

AND OR NOT NAND NOR XOR
Logic gates, truth tables and digital circuit symbols to represent simple logic solutions
Drawing of logic circuits from Boolean expressions
The functional completeness of the NAND and NOR gates

Boolean Algebra Basic theorems and properties of Boolean algebra
Equivalence, contradictions and tautologies

The following list of laws will be assumed:

AM Syllabus (2015): Computing

4

00X (h) X;0X (g)

X1X (f) 1;1X (e)

0XX (d) 1;XX (c)

XXX(b) X;XX (a)

. tautologyofLaws 7.

XX

law.complementDouble 6.

XY)(XX (b) X;YXX (a)

.absorptionofLaws 5.

YXY)(X (b) ;YXY)(X(a)

laws.MorgansDe 4.

Z)(XY)(XZYX(b) Z;XYXZ)(YX(a)

laws.veDistributi 3.

ZY)(XZ)(YX(b) Z;Y)(X Z)(YX(a)

laws.eAssociativ 2.

XYYX(b) X;YYX(a)

laws.eCommutativ 1.



















The simplification of Boolean expressions using Boolean algebra rules and/or
Karnaugh maps – up to 4 variable maximum. (attention should be drawn to “don’t-
care” values)

The applications which should be considered when applying the above theorems
should include all of, and be limited to, the following:

 Half and full adders
 Magnitude comparators
 BCD-to-Gray code converters
 7-segment display units (excluding the decimal point)

AM Syllabus (2015): Computing

5

Module 2: Computer Architecture

Objectives

Students should be able to
 gain a good understanding of all the components making up the computer system
 understand the function of the different components making up the system
 have a clear understanding of how the different system components are connected together and how

they work to give the required output

Content

Overview of the
Organization of a
Computer System

Main PC components
 CPU
 Main Memory
 I/O Subsystem

The System Bus System bus as a means of communication between components
 Address Bus
 Data Bus
 Control Bus

Buses size consideration
System Clock
Interfacing devices to a common bus using the method of Decoders
Synchronous and Asynchronous Transfer
Description of memory read and write cycles

Memory RAM Memory chip typical organization
 Data input and output lines
 Address input lines
 Write enable line

The characteristics and application of RAM type memory chips
 Dynamic RAM
 Static RAM

ROM Memory chip typical organization
The characteristics and application of ROM type memory chips

 ROM
 EPROM
 PROM
 EEPROM

Memory Address Map
Memory connection to the CPU (address decoders)

I/O Subsystem I/O Addressing: Memory mapped vs. Isolated/Separated I/O
Handshaking
Interrupts

 Overview of interrupt handling
 Detecting source of interrupt
 Software polling vs. vectored interrupts

DMA

AGP, PCI and PCI-X buses

Characteristics as follows:

 Throughput described as bits per second;
 Width;
 Multipoint Topology;
 Function.

AM Syllabus (2015): Computing

6

CPU CPU model and overview of main components
CPU’s instruction set and instruction format
Detailed description of processor and registers including MAR, MDR, CIR, PC
and general purpose registers.

 Control Unit
 Arithmetic Logic Unit
 The fetch, decode and execute cycle in terms of buses and registers.
 The stack and its role in subroutine transfer

CPU Registers The purpose and use of special internal registers in the functioning of the CPU
including

 Data registers
 Segment registers
 Index registers
 Stack registers
 Control registers
 Status or flag register
 Cache (description of the structured use of cache memory to improve

processor performance)

Overview of some CPU
design issues

RISC
CISC
(Should be limited to a descriptive overview of the fundamental concepts and a
treatment of functional and applicative differences. Examples should be used to
support explanation)

I/O Peripherals Serial, parallel, USB ports and flash RAM.
Serial data transmission

 Synchronous transmission
 Asynchronous transmission

AM Syllabus (2015): Computing

7

Module 3: Assembly Languages

Objectives

Students should be able to
 Understand the general format of assembly language instructions
 Distinguish between different types of instruction groups
 Distinguish between different types of instruction formats
 Distinguish between various addressing modes
 Understand basic assembly programs given an instruction set
 List assembler functions and tools

Content

Assembly Language
Instructions

Instruction sets
Instruction format – opcode & operand
Mnemonic representation of opcode

Instruction Groups See Appendix A for limited instruction set

Instruction Formats The instruction set together with relevant descriptions will be provided as part of
the question's text during examination sessions. Candidates will not be expected to
write complete programs in assembly, only interpretation of assembly instructions
will be examined.

Registers The general purpose registers: AX (Accumulator), BX (Base), CX (Count) and DX
(Data) as 16 bit registers with reference to their 8 bit high order and low order
bytes.

Addressing Modes Register addressing, e.g. INC AX (increment value of AX by 1)

Immediate addressing, e.g. MOV AX, 03H (move value 3 hex into reg. AX)

Direct addressing (also known as memory addressing). This refers directly to a
memory address and is allows the transfer of data between this memory location
and a register, e.g. MOV AX, [0810H] (move into accumulator the contents of
memory location 0810H)

Indirect addressing, e.g. MOV AX, [BX] (the contents of the BX register is an
address and is used to point to the memory location where the data is to be found)

Indexed addressing, e.g. MOV CX, [BX + DI] (the value in the base index register
BX is combined with the number in the destination index register DI to provide
address of the number to be loaded into the CX register)

Assembler The assembly process: assembling, linking, loading, and relocation
The purpose of different types of assemblers: cross assembler, macro assembler,
meta assembler

AM Syllabus (2015): Computing

8

Module 4: Operating Systems

Objectives

Students should be able to
 describe different operating systems and their function
 outline their interaction
 develop a basic understanding of how operating systems manage memory and files
 understand how the operating system handles input and output operations

Content

Operating Systems Choice of operating system depends on the type of application software to be used
 Batch
 Online
 Real time
 Network
 Process Control Operations

Job Control Languages (JCL) and the use of JCL. No coding knowledge is
required.

The main functions of an
OS:
i. Process Control

Process management
States of a process
 Run
 Wait
 Suspend

Scheduling
 Round Robin
 Priority
 Deadlock
 Deadlock avoidance
 Deadlock detection

ii. Memory Management Memory maps of single and multi programming environments
 Contiguous memory partitioning
 Logical vs. physical address spaces
 Relocate-ability
 Memory fragmentation and compaction
 Pages and page frames
 Size considerations and Faults
 Memory store protection
 (to prevent processes from accessing storage allocated to other jobs

File organization
Management of files as stored physically
Creating and accessing files
Allocation of storage space
Blocks

 Contiguous
 Linked
 Indexed

 Facilities for editing the contents of files

Protection of files
 Facilities against unauthorised access

 User ID and password
 User home directory

AM Syllabus (2015): Computing

9

 File access rights and allocated privileges
 File attributes
 Hardware failure

iv. Handling of I/O
operations

I/O Addressing: Memory mapped vs. Isolated/Separated I/O
Handshaking of Devices

Devices that minimise complexity of I/O operations
 Interrupt vs. polling
 Interrupt handler
 System stack
 Multiple interrupts and interrupt priorities
 Interrupt mask register

V. Interrupts Handling Interrupts
 Overview of interrupt handling
 Detecting source of interrupt
 Software polling vs. vectored interrupts
 DMA

AM Syllabus (2015): Computing

10

Module 5: Networking and Communications

Objectives

Students should be able to
 understand the basics of transmission methods in communication
 distinguish between different categories of networks
 appreciate the purpose of a protocol in communication
 describe in broad terms various international networking communication protocols
 understand the implications added by internet on everyday life
 have a broad knowledge of some general Internet related technical terms

Content

Introduction The use of networks to combine computing and communication technology for
various types of distributed applications
Overview of the OSI model: physical, link, network, transport, session,
presentation and application layers.

Overview of the Transport Control Protocol/Internet Protocol (TCP/IP)

Point-to-point
Connections

Transmission
Technologies

Basics of communications
 The concept of sender, medium and receiver
 Simplex (e.g. TV tele-text, radio receiver, etc.)
 Half duplex (walkie talkie, two-way radios, etc.)
 Full duplex (telephone unit, mobile phone, etc.)

Parallel and Serial transmission (synchronous and asynchronous)
Analogue vs. digital signals
Bandwidth, Bit rate and baud rate

Narrow band (dial-up),
Broadband: ISDN, DSL, ADSL
Peer-to-peer, broadcast networks
Modems
Modulation

 amplitude
 frequency
 phase
 pulse coded (PCM)

Demodulation

Multiplexing
 Time Division Multiplexing (TDM)
 Frequency Division Multiplexing (FDM)

Transmission media
 cabling (twisted-pair, coaxial, optical fibre)
 satellites and wireless

Noise & Interference as two factors which affect data integrity

Computer Networks Definition, classification and properties of a computer network
 PAN
 LAN
 MAN
 WAN

AM Syllabus (2015): Computing

11

Network Topologies The benefits and drawbacks of basic network topologies
 Bus
 Ring
 Star
 Mesh (Partially & Fully interconnected)

Media Access Methods Properties of the CSMA/CD as a means of controlling collisions in Bus networks.
Properties of Token passing as a means of managing Ring networks
(improvements for FDDI and fast Ethernet)

Switching Techniques The difference between various switching techniques and their application
 Circuit-switching
 Message-switching
 Packet-switching

Datagram = packet of data + auxiliary control data
Buffering

Use of switches, hubs, repeaters, bridges and routers.

Error checking and
Recovery

Transmission errors and methods to overcome them
 Parity (single and block) checking
 Cyclic Redundancy Checking (CRC) (only in principle)
 Message acknowledgement (Implicit and Explicit)
 Retransmission schemes (Stop and Wait, Go-back-N, Selective Repeat)

IP Addressing IP as an addressing scheme for every machine on the Internet for successful
delivery of information, its use in subnets, DNS and URL translation

Internet Applications E-learning, distance learning, e-commerce, virtual worlds, conferencing, research,
travel, news and communication

Effective Web
exploitation

Literature searching
Topic tracking and coverage
Collaboration methods
Plagiarism and professional respect
Netiquette in general

Social Implications of
Computing and Internet

Social networking
Computer crime
Computer-related security issues (data, application, networking perspectives)
Computers, employment and privacy
International and local legislation
The global communication and its effect on concept of citizenship and culture
Web 2.0

New transmission
technologies

Integration of Internet
and WWW-related
Protocols and
Terminology

Attributes of Wireless LAN (WLAN) / WiFi.
Overview of modern wireless standards: 802.11 b/g/n.
Wireless network technologies: hotspots, wireless routers, wireless repeaters.
Overview (non-technical) of the WiMax wireless technology, Internet key/dongle.

Hypertext Markup Language (HTML), hypermedia, authoring tools, ADSL,
ISDN, Telnet, FTP, IMAP, POP3

Note: Only familiarity in broad terms (conceptual and comparative only) is
required in this section

AM Syllabus (2015): Computing

12

Module 6: Language Translators

Objectives

Students should be able to
 understand the structure of a formal language
 define the syntax of a formal language using relevant tools
 appreciate the need to define the semantics of the formal language
 describe the stages of compilation
 differentiate between various types of language translators

Content

Formal languages The differences between natural and formal languages
The alphabet of the language
Terminal and non-terminal symbols
Language productions

Defining the syntax of
a programming
language:

The syntax of a formal
language

Defining syntax using BNF and Syntax Diagrams. Overview of EBNF. Note that
EBNF is not standard and students are only required to have a general knowledge
of the EBNF standard.

Symbol classes (identifiers, delimiters, operators, numbers)
Reserved words
The use of BNF/EBNF to unambiguously express the syntax of a language
The use of parse trees (bottom up / top down) and canonical parsing to check that a
statement is syntactically correct according to a set of rules or productions
The use of Reverse Polish Notation (RPN) to define arithmetical statements
The use of binary trees and stack to obtain and evaluate a post-fix (RPN) statement

The semantics of a
formal language

The need for semantics (meaning) other than syntax (form)
Context sensitivity

The compilation
process

The stages of compilation
 Lexical analysis

- removal of redundant text, simple error handling
- conversion of lexemes to tokens

 Syntax and semantic analysis
- parsing
- symbol table
- compile-time error detection and handling

 Code optimisation & generation
- simple techniques to optimise code
- translation into object code, linking

Language translators The differences between assemblers, compilers and interpreters
Other types of compilers: macro pre-processors, cross-compilers, p-code
compilers, virtual machine concepts, just-in-time compilation.

AM Syllabus (2015): Computing

13

Module 7: Systems Analysis and Design

Objectives

Students should be able to
 Understand the main principles of systems analysis and design
 Develop a practical knowledge of the main stages of the systems development life cycle including:

identification of problem, feasibility study, information processing requirements, analysis, design,
implementation, testing and maintenance.

Content

Overview of the System
LifeCycle

The main stages of a system life cycle: Feasibility Study, Analysis, Design,
Programming, Testing, Installation and Maintenance.
Compare and Contrast The Waterfall lifecycle with that of Rapid Application
Development (RAD).

Identification of the
problem

What prompts an organization to develop a new system:
 current system may no longer be suitable for its purpose
 technological developments
 current system may be too inflexible or expensive to maintain

Understanding the problem completely through:
 Interviews
 Questionnaires
 Inspection of documents
 Observation (of existing system)

Feasibility study Preparation of a report containing the scope and objectives of the proposed system.
The feasibility report should determine whether it is worth proceeding from a
number of aspects. The main feasibility aspects to consider are:

 Technical
 Operational
 Timeliness
 Economic
 Legal
 Social

Candidates should be able to describe and reason in the above terms whether or not
the project is feasible

System Analysis /
Requirements Analysis

System requirements
 Processing required
 Data storage
 Input and output formats

Joint Application Development
 How can JAD help in identifying business requirements?
 In what circumstance is it best to use JAD?

UML diagrams: How can UML help system analyst model various part of the
system.

 What is a Use Case Diagram?
 How can a Use Case Diagram help in determining system requirements?
 Class Diagrams and their basic application.

Data flow of system: Fundamental concepts of Data Flow Diagrams (DFDs only up
to Level 1)
Entity Attribute Models (only basic use)

AM Syllabus (2015): Computing

14

Formulation and evaluation of alternative proposals
Development and maintenance needs for each solution
Choice between “off-the-shelf” solutions and purpose-built ones

System Design Top-down and bottom up approaches to system design

The design specifies:
 Design of user interface
 Menu design
 Specification of data employed (data inputs)
 Organization of data output
 Specification of hardware and software selection
 Conversion plan
 Test strategy, test plan, and test data. (Test cases)

The use of the following algorithm representation forms:
 Hierarchical Input Output Processing (HIPO) chart
 Jackson Structured Programming (JSP) method
 Decision tables
 Flowcharts
 Structured text and pseudo-code

Modular design and modular interface concepts

The use of Prototyping
Comparing the Spiral Model with the Waterfall model

Preparing the documentation

Coding and Testing Coding of modules
Documentation of any deviations from the original design
Module development
Testing according to Testing strategy
Preparing the User Manual

Types of Testing:
 Bottom up testing
 Top down testing
 Black box and White Box testing
 Alpha and Beta testing

Implementation Tasks to be faced before the changeover is complete:
 Installing any applicable hardware
 Training system users
 Creation of master files

Change-over techniques (basic idea behind and comparative):
 Direct
 Parallel
 Phased
 Pilot

Maintenance Best practices in (fundamental points only):
 System analysis
 Modularity
 Documentation generation

Types of maintenance (basic concepts behind and examples):
 Adaptive

AM Syllabus (2015): Computing

15

 Corrective
 Perfective
 Predictive

AM Syllabus (2015): Computing

16

Module 8: Introduction to Data Structures and High Level Language Programming

Objectives

Students should be able to
 Identify and describe different programming paradigms including imperative, declarative, functional

and object-oriented
 Gain a good understanding of the object oriented and imperative paradigms
 Have a good understanding of the fundamental concepts of object oriented programming including

objects and classes, data encapsulation, inheritance and polymorphism
 Gain a good knowledge of the notions of class, object, attribute and operation
 Have a good knowledge of the different data types available
 Identify and have a sound understanding of the relevant programming constructs targeted at problem

solving
 Select and appropriately apply standard algorithms for sorting and searching
 Know how to make use of files as a permanent type of storage mechanism

Content

High Level Languages Introduction to programming paradigms
 Characteristics of each programming paradigm including: imperative,

declarative, functional, object-oriented and event-driven programming
 Domain relevance of the above mentioned programming paradigms

Comparison between Object-oriented and Imperative Programming
 The need for a programming paradigm which models the real world in

terms of software reusability
 The limitations of imperative programming: variable assignment

rather than object manipulation
 The object-oriented solution: the use of classes and objects in problem

solving

Object-Oriented Programming Characteristics
 Encapsulation (through classes and objects including attributes and

operations)
 Message passing (i.e. operation invocation)
 Inheritance
 Information hiding
 Polymorphism

Data Types Standard Types
 Numeric types and their ranges
 Character (char) and String types
 Boolean types
 Enumerated types
 Other classes as types

Constants, Variables, Scope and visibility of variables

Control Structures

Conditional Conditional structure statements

Looping Structures Pre-tested loops
Post-tested loops
Nested loops

Methods and classes The Java API (to be covered from point of view of usage and not content)
Argument passing by reference and by value
Class vs. Object (deserves good coverage from a conceptual point of view)
Static classes

AM Syllabus (2015): Computing

17

Abstract classes
Recursion

Data Structures

Exception Handling Distinction between errors and exceptions
Identification of “throwable classes”
Use of “throws”
Use of the “try-catch” block

Data structures and
algorithms

Purpose and application of data structures

Stacks LIFO structure
Concept of Pointers (supported through examples)
Creating a stack (difference between a static and dynamic structure)
Push and Pop algorithms to add and delete elements from a stack
Traverse stack to display its contents

Linear Lists
Linked Lists
Circular Lists
Double Linked Lists
Queues

Creating the structures
Adding a node to the structure
Deleting a node from the structure
Traversing the structure

Binary Trees Creating a tree
Adding a node
Deleting a node
Traversing the tree using the three traversals

 Pre-Order Traversal
 In-Order Traversal
 Post-Order Traversal

Hash Tables Notion of a hash table
Creating and Updating a hash table
Hash functions
Collisions

Other Structures Arrays:
 Single and Multi-dimensional
 Creating an array
 Filling in an array with data
 Displaying data from an array

Vectors and/or Array Lists

Standard Algorithms

Sorting Algorithms Space, time and complexity considerations for algorithms
 Insertion sort
 Selection sort
 Bubble sort
 Quick sort
 Merge sort

Use of the big-“O” notation to compare the above algorithms according to
complexity criteria

Searching Algorithms Linear Search
Binary Search

Files and File Access

Files Text files, Random files and Object Files
 Creating a file

AM Syllabus (2015): Computing

18

 Writing to a file
 Reading from a file
 Updating a file (inserting and deleting)
 Merging files

Serialization
 The Serialize-able interface
 Serializing single instances
 Serializing Vectors or Array Lists

AM Syllabus (2015): Computing

19

Module 9: Databases

Objectives

Students should be able to
 Understand the basic structure, function and importance of database management systems (DBMS)
 Be able to compare different database models
 Appreciate the importance of relational databases over traditional file systems
 Understand the logical structure and design of a relational database
 Describe data models diagrammatically using Entity-Relationship (E-R) diagrams
 Normalise a relational database up to the Third Normal Form
 Apply methods and tools for database design by using currently available database packages
 Understand the purpose of a query language and be able to interpret simple SQL commands

Content

Database Management
Systems

The structure and functions of database management systems (DBMS)
including:

 Data dictionary
 File manager
 Data manipulation language (DML)
 Data description language (DDL)
 Query language
 Security

The responsibilities of a database administrator

Database Models Comparison of flat files, hierarchical, network and relational database models,
object-oriented database models.

Relational Databases vs.
Traditional File Systems

The advantages of databases over traditional file systems including: improved
data consistency and portability, control over data redundancy, greater security

The disadvantages of databases over traditional file systems including: greater
complexity and cost, vulnerability to system failure and unauthorised access,
larger size

Relational Databases The nature and logical structure of a relational database as a set of tables linked
together using common fields.

The purpose of primary, secondary and foreign keys, attributes (field), tuples
(record).

Use a short notation to represent a relational table in which the name of the
table written in capitals is followed by a list of all the attributes in brackets, with
the primary key underlined. E.g. STUDENT (stud_id, name, surname, DoB,
address)

Entity-Relationship
Modelling

The use of Entity-Relationship (E-R) Models to give a graphical description of
the relationship between entities, including the following cardinality:

 one-to-one,
 one-to-many and
 many-to-many relationships

The standard “Crow’s Foot” notation is to be used to model and describe the
above concepts.

Normalisation The importance of normalisation to avoid unnecessary redundancy
Normalise a simple relational database up to the Third Normal Form

Database Applications The purpose and use of commercial and top-end database packages, web-based
database solutions

Develop a simple relational database using fourth generation applications such

AM Syllabus (2015): Computing

20

as Microsoft AccessTM or DelphiTM

Structured Query Language
(SQL)

Understand the purpose and use of SQL commands to manipulate data
including: SELECT, FROM, WHERE, ORDER BY, HAVING, GROUP BY,
JOIN

Candidates will NOT be expected to write segments of SQL, only interpretation
of SQL instructions will be examined.

AM Syllabus (2015): Computing

21

APPENDIX A (TO MODULE 2): ASSEMBLY LANGUAGES

Limited instruction set to be used

Data Transfer
instructions

MOV Moves byte or word to register or memory

PUSH Push a word on stack

POP Pop a word from stack

Logical Instructions NOT Logical not (1’s complement)

AND Logical and

OR Logical or

XOR Logical exclusive-or

Arithmetic Instruction ADD , ADC Add and Add with carry

SUB, SBB Subtract and Subtract with borrow

INC Increment

DEC Decrement

CMP Compare

Transfer Instructions JMP Unconditional Jump

JE Jump on Equal

JNE Jump on Not Equal

JL Jump if Less

JLE Jump if less or equal

JG Jump if Greater

JGE Jump if Greater or Equal

JC, JNC Jump on carry or Jump on No Carry

CALL Call Subroutine

RET Return from subroutine

Flag Manipulation CLC Clear Carry
STC Set Carry

Shift and Rotate SHL, SHR Logical Shift Left or Right
RCL, RCR Rotate through Carry Left or Right

AM Syllabus (2015): Computing

22

APPENDIX B: LIST OF ACRONYMS

ADSL - Asymmetric Digital Subscriber Line

ASCII - American Standard Code for Information Interchange

ATM - Asynchronous Transfer Mode

BNF - Backus Naur Form

CISC - Complex Instruction Set Computer

CSMA/CD - Carrier Sense Multiple Access / Collision Detect

DMA - Direct Memory Access

DTP - Desktop Publishing

EBNF - Extended Backus Naur Form

ROM - Read Only Memory

EEPROM - Electrically Erasable Programmable ROM

EPROM - Erasable Programmable ROM

FDDI - Fiber Distributed Data Interface

FTP - File Transfer Protocol

HDSL - High bit-rate Digital Subscriber Line

IMAP - Internet Message Access Protocol

ISDN - Integrated Services Digital Network

LAN - Local Area Network

LIFO - List In First Out

MAN - Metropolitan Area Network

OSI - Open Systems Interconnection

POP - Post Office Protocol

PROM - Programmable ROM

RISC - Reduced Instruction Set Computers

SMTP - Simple Mail Transfer Protocol

USB - Universal Serial Bus

WAN - Wide Area Network

AM Syllabus (2015): Computing

23

4. RECOMMENDED TEXTS
(Students are urged to look for the latest editions, ISBNs will therefore vary accordingly)

4.1 Student's basic text book

Heathcote, P.M., Langfield S., A-Level Computing, Payne-Gallway Publishers.

4.2 Other recommended text books

Brooshear, J.G., Computer Science – An Overview, Addison Wesley.
David, J.B., Kolling, M., Objects First with Java, Prentice Hall.
Wu, C.T., An Introduction to Object-Oriented Programming with Java, McGraw-Hill.

The use of the Internet, in the form of on-line documentation and reference sources, is strongly recommended.

4.3 Recommended references books

Computer Architecture and
Assembly

Abel, P., IBM PC Assembly Language and Programming. Prentice
Hall.

Kleitz, W., Digital and Microprocessor Fundamentals. Prentice
Hall.

Data Structures and Algorithms Carrano F. M., Prichard J. J., Data Abstraction and Problem
Solving with C++: Walls and Mirrors. Addison Wesley.

Databases and SQL Whitehorn M., Marklyn B., Inside Relational Databases. Springer-
Verlag UK.

Taylor, A. G., SQL For Dummies. John Wiley & Sons Inc.

Digital Logic Morris, M., Digital Design. Prentice Hall.

Networking and Communications Hodson, P., Local Area Networks. Continuum.

Operating Systems Ritchie, C., Operating Systems. Incorporating Unix and Windows.
Continuum.

Project Management Heathcote, P.M., Tackling Computer Projects. Payne-Gallway
Publishers.

Systems Analysis and Design Kendall, J. E., Kendall E. K., Systems Analysis and Design.
Prentice Hall.

Lejk, M., Deeks, D., Sytems Analysis Techniques, Addison Wesley.

Java Deitel, P.J., Deitel, H.M., Java, How to Program, Prentice Hall.

Schildt, H., Java: A Beginner's Guide, Osborne McGraw-Hill.

Schildt, H., Java: J2SE (Osborne Complete Reference S.),
McGraw-Hill.

Other British Computer Society, Glossary of Computer Terms, Addison-
Wesley.

AM Syllabus (2015): Computing

24

5. FURTHER INFORMATION REGARDING THE PROJECT

5.1 Rationale
The project is intended to be an extended exercise requiring about three months of effort, typically conducted in
the second year of study. It should demonstrate a student’s mastery of:

a) The syntax and semantics of the Java programming language. The mastery of control constructs within
Java as well as the application of algorithmic logic to the resolution of real-world issues. (It should be
made clear and stressed that Java is the language that must be used for the implementation of this
project).

b) The identification of a problem domain, some basic analytical though towards the function and design
of suitable data structures and algorithms. (Students are encouraged to identify more than one real-life
application or original project that will later have to be discussed with their supervisor).

c) Fundamental testing procedures and the choice of test data to demonstrate the functional behaviour of a
system;

d) Documenting a system both from a technical as well as a user perspective.

Emphasis should be directed at structured and efficient programming techniques rather than on cosmetic
aspects. Originality in the selection of the problem and creative solutions will be rewarded. Typical projects
should put into practice concepts and techniques covered by the syllabus.

Technical documentation presented should highlight major design decisions of data structures and algorithms.
Clear, concise and correct use of English is expected.

5.2 Deadlines

School project assessment marks are to be submitted to the MATSEC Support Unit not later than the date
stipulated by the MATSEC Board.

Note on Private candidates:
Private candidates are to submit all exercises for assessment to MATSEC Support Unit by the date stipulated by
the MATSEC Board.

All candidates may be called for an interview regarding their work.

5.3 Procedure for Assessment of Projects

Candidates presented by Schools. Assessment of each candidate’s performance in the project will be school-
based and is subject to moderation by the Markers’ Panel. Tutors will submit their mark, through the Head of
School, to the MATSEC Support Unit, University of Malta. The school should make the project reports
available to the Markers’ Panel for the purpose of carrying out the moderation exercise.

Private candidates. The project reports prepared by private candidates will be assessed directly by the Markers
Panel. Such project reports should be made available at the MATSEC Support Unit, University of Malta for
assessment. A percentage of these candidates may be asked to give a full presentation of their project during a
personal interview with members of the Markers panel.

In all cases. The project should include a statement certifying that the substance of the project and the report are
the candidate's own work, signed by both the tutor and the candidate. The project reports will be returned to
schools and to private candidates following the publication of the examination results.

5.4 Project Report

The following points should be considered by candidates when presenting their project report and other relevant
material:

AM Syllabus (2015): Computing

25

a) Any CDs submitted must be clearly labelled (with the candidate’s name, project title in brief, exam
session date). The CD jacket must contain a clear indication of their contents and how they are to be
run. Only work on once-recordable CDs will be accepted. Any handed -in CDs must be finalised (i.e.
no open multiple recording sessions are allowed). The use of floppy discs or re-writable CDs is NOT
allowed.

b) Documentation should be presented in a neat and well organised manner.
c) The exact aims and objectives of the project should be stated and any deviation from the approved

project should be adequately justified.
d) A clear basic project plan must be thought out and presented.
e) A clear table of contents should be provided towards the beginning of the report.
f) All sections within the documentation should carry clear and meaningful headings.
g) Any diagrams should be captioned and duly referenced in the text of the report itself.
h) Background material on the project should be included as opening material in the report.
i) The candidate should ensure that the documentation flow allows the reader to understand and use the

project.
j) The chosen strategy for testing should be described and justified, and test data used together with test

runs suitably recorded and presented.
k) The design of the user interface should be briefly described and justified.
l) The overall system structure should be made clear by including suitable diagrams as and whenever

deemed necessary.
m) Any techniques and tools used should be clearly defined at some point prior to their use.
n) The use of any third party software should be justified and its use in relation to the candidate’s work

explained.
o) Annotated listing of any software produced should be provided.
p) Any unsolved issues, errors or restrictions from the original specifications should be indicated with

explanations and suitable comments.
q) Choices taken and alternatives discarded while designing should be adequately justified.
r) A critical evaluation of the overall success of the project should be made.
s) Ideas for possible enhancements or more general models for the problem should be discussed.
t) The original project plan should be compared with the actual history of the project.
u) The final report must be soft bound.
v) The report format should adhere to the following guidelines:

Paper Size A4
Printing One side of the paper only
Line Spacing 1.5
Font Size 12 (some sections in 10pt OK)
Font Type Ariel
Top, Bottom, Left Margins 3cm
Right Margin 2 cm
Page Numbering Arabic numerals, in page footer
Page identification Candidate name, project title, month &

year, in page header
Maximum Length Approx. 10K words

For the sake of understand-ability, essential information, subsidiary or detailed technical material should be
included in an appendix (recommended not to exceed half the size of the project report).

5.6 Grading Scheme

The overall examination grade will be based on an overall aggregate score, as indicated by the percentages of
the various assessable components in Section 2 of this syllabus, and students must obtain a minimum mark in
each paper to be established by the Markers Panel. Therefore, both project and written components should be
considered as failing. Furthermore, the written component will contain a question, or questions, of a simple
nature in compulsory Section A of Paper I which will specifically exercise the basic programming knowledge of
candidates. Furthermore, candidates can qualify for Grades A to C, ONLY if they satisfy the examiners in the
programming exercise(s) in Section A of Paper I.

Candidates will be allowed to re-submit the project in the next session if they fail to satisfy the examiners in this
component of the examination in the first session. All candidates who fail in the project will be informed
accordingly.

AM Syllabus (2015): Computing

26

5.7 Project Marking Scheme (guidelines for project assessors)
The award of marks will be based on the following assessment criteria.

Problem Definition
Presentation and clarity of the problem chosen:
The way the problem is presented and explained to the reader: whether the problem involves a computerization
of an existing manual system e.g. a student database or an original application e.g. a game

How well the shortcomings are identified and what are the specifications the new system should have including
forecasted limitations and constraints.

 [5]
Programming elements
Project Design:
The way classes are designed and explained, using standard tools as expected in Data Structures modules using
Class Diagrams and Systems Analysis module using ONE Level 0 Context Data Flow Diagram.

[5]
Sub-programs design:
Explanation of sub-programs used using standard algorithms e.g. pseudo-coding or Flow Charts.

[5]
Use of basic JAVA programming elements:
Good use of JAVA programming elements including, use of: primitive data types, variables, pre/post tested
loops, conditional & switch statements, methods with and without parameters, arrays, exception handling.

[15]

Algorithms & Logic
Efficient algorithms:
Credit should be given to candidates who design & employ good programming algorithms for sorting, efficient
searching techniques and algorithms which make code re-usable and non-redundant

[8]
Flow of application
A good, logical flow of application execution with good data transfer, logical sequence of events, robustness in
program structural design to ensure the actual flow of running matches with the intentional design.

[8]
Interface Efficiency
Credit to the interface which allows the easiest and most efficient navigation, shows a good design and is simple
in built.

[4]
Object Oriented Principles
Use of programmer’s designed Classes and Objects
The level and quality used in designing own classes which create Objects and the way these Classes are
integrated to the main application. How well encapsulation is ensured throughout the running of the program.

[4]
Inheritance:
Design and use of Inheritance principles to reduce the redundant code, including normal inheritance and use of
abstract classes

[3]
Polymorphism:
Use of polymorphism in methods and arrays of Objects which suit any form of object

[3]

File Handling
Use of files:
Use of appropriate files to store data generated by the application: Object files, text files.

[3]
File Operations:
Operations carried out on files including reading, sorting, appending, and writing to files.

[2]
Application of JAVA API’s
Use of JAVA built-in API’s and other API’s:

AM Syllabus (2015): Computing

27

The use of JAVA standard API’s such as packages (e.g. javax.swing, java.awt, java.util etc..) and their
respective classes

[5]

Solution Evaluation and Testing Procedures
Evaluation:
An overall critical appraisal of the project and whether the aims of the project have been reached or not with
justifications for any deviations from the original plan.

[8]

Testing Description:
How well the testing is designed, what strategies are employed and how well the test cases are chosen and
presented.

[5]

Evidence of testing:
Evidence and documentation of test results according to test cases with input, output, expected output and
screen shots showing the program running.

[8]

User’s manual:
A concise but complete user’s manual with clear, annotated screen shots, aimed at non-technical, end users
explaining how the application can be installed and used.

[7]
Conclusion & Future Improvements:
The benefits of the current system and any areas in the project that need improvement.

[2]

5.8 Accredited Schools

Schools presenting candidates for this examination must normally offer full-time courses in Computer Science
and must be accredited by the Maltese education authorities.

It is the responsibility of schools presenting candidates for this examination to ensure that they are properly
equipped with the appropriate hardware equipment and software packages for any project work set for the
candidates. No concession for candidates lacking the right tools and equipment will be made by the MATSEC
Board.

5.9 Assessors
The teachers authorised to act as assessors of the project will be appointed by the University. Any authorised
assessor reserves the right to interview any candidate of his/her choice regarding the content of any, or of all, of
the candidate’s submitted assignments.

AM Syllabus (2015): Computing

AM Syllabus (2013): Computing

AM SYLLABUS (2013)

COMPUTING

AM 07

SYLLABUS

Computing AM06

 (Available in September)

Syllabus

 Paper 1(3 hrs) + Paper II(3 hrs) + Paper III(Project)

1.
INTRODUCTION

This MATSEC Advanced level Computing Syllabus has been prepared and compiled in line with previous syllabi, latest Computing related developments and space for future syllabi to add and enhance the contents. In line with the objectives clearly set in the previous version of this syllabus, the programming language that is to be used throughout this syllabus is to be “Java”. This programming language will be used in every aspect of this syllabus wherever the use of a programming language is required, including the implementation of the project.

It is also stressed that all theoretical treatment of topics should be adequately accompanied by practical (real-world) examples when and wherever applicable.

The nature of the project and what it aims to exercise has also been amended in this syllabus. The project now carries 20% of the global score for this subject and is primarily intended to consolidate and assess the freshly acquired programming and logical-analytical skills of candidates, rather than the abstract-analytical, design, project management skills, and software engineering rationale in general, which can be better assimilated in later stages of the educational process, when it is felt that candidates’ thought processes have reached higher levels of maturity.

Candidates are expected to have followed the Computer Science stream at secondary level and have progressed on to the SEC level Computer Studies thereby acquiring sound background knowledge of the history of Computing, current and future trends, as well as the sector-specific and social applications of Information Technology.

This syllabus is ideal for those students who wish to deepen their understanding of various aspects of the Computing discipline possibly with an eye to pursuing any undergraduate degree programme through a fundamental treatment of the technical aspects of larger field of ICT.

This document is organized as follows. The next section briefly underlines the contents of the examination itself while Syllabus details are described in detail in Section 3. Section 4 lists recommended texts and reference books that Computing educators can make use of to assist their students. Finally, detailed information about the practical project is expanded in Section 5.

2.
Examination

The examination shall consist of three parts, namely, two written papers each of three hours duration and a project. The overall grade will be based on an overall aggregate score, as indicated by the percentages of the various assessable components of this examination, and students must obtain a minimum mark in each part of the examination, to be established by the Markers’ panel.

Paper I (100 marks) shall consist of twenty short compulsory questions in all. These questions will be spread over two sections. Section A and Section B. Section A shall exclusively contain one or more simple questions that will directly exercise the acquired programming knowledge of the candidate. Section B shall contain questions from any part of the syllabus and that require short and to the point answers each worth 5 marks. Paper I carries 40% of the final (total) examination score.

Paper II (100 marks) shall consist of eight long questions of which candidates are expected to answer five. Each question carries 20 marks and students are expected to understand precisely what is being asked and demonstrate understanding by answering in some depth. Paper II carries 40% of the final (total) examination score.

Paper III (100 marks) is a project that is expected to take up about three months of the candidates’ study programme in order to clearly test and demonstrate the range of logical and programming skills they have acquired and possess. Paper III (The Project) carries 20% of the final (total) examination score.

Note Regarding use of calculators:

Calculators may NOT be used n any part of this examination.

3.
SYLLABUS

Module 1: Digital Logic

Objectives

Students should be able to

· understand the basics behind binary logic

· make use, understand and draw truth tables for logic expressions

· draw logic circuits from Boolean expressions

· apply fundamental Boolean algebra rules and/or Karnaugh maps to simplify simple Boolean expressions

· Understand the use of basic logic theorems to build practical and fundamental logic circuitry

		Data Representations

		Decimal, Binary and Hexadecimal number systems

Converting numbers from one number system to another

The use of sign and magnitude and two’s complement method to represent positive and negative numbers

The interpretation of different numerical representation formats:

· unsigned whole numbers

· unsigned numbers with fractions

· signed integer fixed point representation

· signed fractional fixed point representation

· signed floating-point representation

The range of fixed-point & floating point format representation

Overflow and underflow

The use of codes to define a character set including ASCII, Unicode

		Logic Gates

		Binary logic as a mathematical way of manipulating and processing binary information

Basic logic operators:

AND
OR
NOT
NAND
NOR
XOR

Logic gates, truth tables and digital circuit symbols to represent simple logic solutions

Drawing of logic circuits from Boolean expressions

The functional completeness of the NAND and NOR gates

		Boolean Algebra

		Basic theorems and properties of Boolean algebra

Equivalence, contradictions and tautologies

The following list of laws will be assumed:

[image: image1.wmf]0

0

X

(h)

X;

0

X

(g)

X

1

X

(f)

1;

1

X

(e)

0

X

X

(d)

1;

X

X

(c)

X

X

X

(b)

X;

X

X

(a)

.

 tautology

of

Laws

7.

X

X

law.

complement

Double

6.

X

Y)

(X

X

(b)

X;

Y

X

X

(a)

.

absorption

of

Laws

5.

Y

X

Y)

(X

(b)

;

Y

X

Y)

(X

(a)

laws.

Morgans

De

4.

Z)

(X

Y)

(X

Z

Y

X

(b)

Z;

X

Y

X

Z)

(Y

X

(a)

laws.

ve

Distributi

3.

Z

Y)

(X

Z)

(Y

X

(b)

 Z;

Y)

(X

 Z)

(Y

X

(a)

laws.

e

Associativ

2.

X

Y

Y

X

(b)

X;

Y

Y

X

(a)

laws.

e

Commutativ

1.

=

×

=

+

=

×

=

+

=

×

=

+

=

×

=

+

=

=

+

×

=

×

+

+

=

×

×

=

+

+

×

+

=

×

+

×

+

×

=

+

×

×

×

=

×

×

+

+

=

+

+

×

=

×

+

=

+

The simplification of Boolean expressions using Boolean algebra rules and/or Karnaugh maps – up to 4 variable maximum. (attention should be drawn to “don’t-care” values)

The applications which should be considered when applying the above theorems should include all of, and be limited to, the following:

· Half and full adders

· Magnitude comparators

· BCD-to-Gray code converters

· 7-segment display units (excluding the decimal point)

Module 2: Computer Architecture

Objectives

Students should be able to

· gain a good understanding of all the components making up the computer system

· understand the function of the different components making up the system

· have a clear understanding of how the different system components are connected together and how they work to give the required output

Content

		Overview of the Organization of a Computer System

		Main PC components

· CPU

· Main Memory

· I/O Subsystem

		The System Bus

		System bus as a means of communication between components

· Address Bus

· Data Bus

· Control Bus

Buses size consideration

System Clock

Interfacing devices to a common bus using the method of Decoders

Synchronous and Asynchronous Transfer

Description of memory read and write cycles

		Memory

		RAM Memory chip typical organization

· Data input and output lines

· Address input lines

· Write enable line

The characteristics and application of RAM type memory chips

· Dynamic RAM

· Static RAM

ROM Memory chip typical organization

The characteristics and application of ROM type memory chips

· ROM

· EPROM

· PROM

· EEPROM

Memory Address Map

Memory connection to the CPU (address decoders)

		I/O Subsystem

		I/O Addressing: Memory mapped vs. Isolated/Separated I/O

Handshaking

Interrupts

· Overview of interrupt handling

· Detecting source of interrupt

· Software polling vs. vectored interrupts

DMA

AGP, PCI and PCI-X buses

Characteristics as follows:

· Throughput described as bits per second;

· Width;

· Multipoint Topology;

· Function.

		CPU

		CPU model and overview of main components

CPU’s instruction set and instruction format

Detailed description of processor and registers including MAR, MDR, CIR, PC and general purpose registers.

· Control Unit

· Arithmetic Logic Unit

· The fetch, decode and execute cycle in terms of buses and registers.

· The stack and its role in subroutine transfer

		CPU Registers

		The purpose and use of special internal registers in the functioning of the CPU including

· Data registers

· Segment registers

· Index registers

· Stack registers

· Control registers

· Status or flag register

· Cache (description of the structured use of cache memory to improve processor performance)

		Overview of some CPU design issues

		RISC

CISC

(Should be limited to a descriptive overview of the fundamental concepts and a treatment of functional and applicative differences. Examples should be used to support explanation)

		I/O Peripherals

		Serial, parallel, USB ports and flash RAM.

Serial data transmission

· Synchronous transmission

· Asynchronous transmission

Module 3: Assembly Languages

Objectives

Students should be able to

· Understand the general format of assembly language instructions

· Distinguish between different types of instruction groups

· Distinguish between different types of instruction formats

· Distinguish between various addressing modes

· Understand basic assembly programs given an instruction set

· List assembler functions and tools

Content

		Assembly Language Instructions

		Instruction sets

Instruction format – opcode & operand

Mnemonic representation of opcode

		Instruction Groups

		See Appendix A for limited instruction set

		Instruction Formats

		The instruction set together with relevant descriptions will be provided as part of the question's text during examination sessions. Candidates will not be expected to write complete programs in assembly, only interpretation of assembly instructions will be examined.

		Registers

		The general purpose registers: AX (Accumulator), BX (Base), CX (Count) and DX (Data) as 16 bit registers with reference to their 8 bit high order and low order bytes.

		Addressing Modes

		Register addressing, e.g. INC AX (increment value of AX by 1)

Immediate addressing, e.g. MOV AX, 03H (move value 3 hex into reg. AX)

		

		Direct addressing (also known as memory addressing). This refers directly to a memory address and is allows the transfer of data between this memory location and a register, e.g. MOV AX, [0810H] (move into accumulator the contents of memory location 0810H)

Indirect addressing, e.g. MOV AX, [BX] (the contents of the BX register is an address and is used to point to the memory location where the data is to be found)

		

		Indexed addressing, e.g. MOV CX, [BX + DI] (the value in the base index register BX is combined with the number in the destination index register DI to provide address of the number to be loaded into the CX register)

		Assembler

		The assembly process: assembling, linking, loading, and relocation

The purpose of different types of assemblers: cross assembler, macro assembler, meta assembler

Module 4: Operating Systems

Objectives

Students should be able to

· describe different operating systems and their function

· outline their interaction

· develop a basic understanding of how operating systems manage memory and files

· understand how the operating system handles input and output operations

Content

		Operating Systems

		Choice of operating system depends on the type of application software to be used

· Batch

· Online

· Real time

· Network

· Process Control Operations

Job Control Languages (JCL) and the use of JCL. No coding knowledge is required.

		The main functions of an OS:

i. Process Control

		Process management

States of a process

· Run

· Wait

· Suspend

Scheduling

· Round Robin

· Priority

· Deadlock

· Deadlock avoidance

· Deadlock detection

		ii. Memory Management

		Memory maps of single and multi programming environments

· Contiguous memory partitioning

· Logical vs. physical address spaces

· Relocate-ability

· Memory fragmentation and compaction

· Pages and page frames

· Size considerations and Faults

· Memory store protection

 (to prevent processes from accessing storage allocated to other jobs

		

		File organization

Management of files as stored physically

Creating and accessing files

Allocation of storage space

Blocks

· Contiguous

· Linked

· Indexed

 Facilities for editing the contents of files

Protection of files

 Facilities against unauthorised access

· User ID and password

· User home directory

· File access rights and allocated privileges

· File attributes

· Hardware failure

		iv. Handling of I/O operations

		I/O Addressing: Memory mapped vs. Isolated/Separated I/O

Handshaking of Devices

Devices that minimise complexity of I/O operations

· Interrupt vs. polling

· Interrupt handler

· System stack

· Multiple interrupts and interrupt priorities

· Interrupt mask register

		V. Interrupts Handling

		Interrupts

· Overview of interrupt handling

· Detecting source of interrupt

· Software polling vs. vectored interrupts

· DMA

Module 5: Networking and Communications

Objectives

Students should be able to

· understand the basics of transmission methods in communication

· distinguish between different categories of networks

· appreciate the purpose of a protocol in communication

· describe in broad terms various international networking communication protocols

· understand the implications added by internet on everyday life

· have a broad knowledge of some general Internet related technical terms

Content

		Introduction

		The use of networks to combine computing and communication technology for various types of distributed applications

Overview of the OSI model: physical, link, network, transport, session, presentation and application layers.

Overview of the Transport Control Protocol/Internet Protocol (TCP/IP)

		Point-to-point Connections

Transmission Technologies

		Basics of communications

· The concept of sender, medium and receiver

· Simplex (e.g. TV tele-text, radio receiver, etc.)

· Half duplex (walkie talkie, two-way radios, etc.)

· Full duplex (telephone unit, mobile phone, etc.)

Parallel and Serial transmission (synchronous and asynchronous)

Analogue vs. digital signals

Bandwidth, Bit rate and baud rate

Narrow band (dial-up),

Broadband: ISDN, DSL, ADSL

Peer-to-peer, broadcast networks

Modems

Modulation

· amplitude

· frequency

· phase

· pulse coded (PCM)

Demodulation

		

		Multiplexing

· Time Division Multiplexing (TDM)

· Frequency Division Multiplexing (FDM)

Transmission media

· cabling (twisted-pair, coaxial, optical fibre)

· satellites and wireless

Noise & Interference as two factors which affect data integrity

		Computer Networks

		Definition, classification and properties of a computer network

· PAN

· LAN

· MAN

· WAN

		Network Topologies

		The benefits and drawbacks of basic network topologies

· Bus

· Ring

· Star

· Mesh (Partially & Fully interconnected)

		Media Access Methods

		Properties of the CSMA/CD as a means of controlling collisions in Bus networks.

Properties of Token passing as a means of managing Ring networks (improvements for FDDI and fast Ethernet)

		Switching Techniques

		The difference between various switching techniques and their application

· Circuit-switching

· Message-switching

· Packet-switching

Datagram = packet of data + auxiliary control data

Buffering

Use of switches, hubs, repeaters, bridges and routers.

		Error checking and Recovery

		Transmission errors and methods to overcome them

· Parity (single and block) checking

· Cyclic Redundancy Checking (CRC) (only in principle)

· Message acknowledgement (Implicit and Explicit)

· Retransmission schemes (Stop and Wait, Go-back-N, Selective Repeat)

		IP Addressing

		IP as an addressing scheme for every machine on the Internet for successful delivery of information, its use in subnets, DNS and URL translation

		Internet Applications

		E-learning, distance learning, e-commerce, virtual worlds, conferencing, research, travel, news and communication

		Effective Web exploitation

		Literature searching

Topic tracking and coverage

Collaboration methods

Plagiarism and professional respect

Netiquette in general

		Social Implications of Computing and Internet

		Social networking

Computer crime

Computer-related security issues (data, application, networking perspectives)

Computers, employment and privacy

International and local legislation

The global communication and its effect on concept of citizenship and culture

Web 2.0

		New transmission technologies

Integration of Internet and WWW-related Protocols and Terminology

		Attributes of Wireless LAN (WLAN) / WiFi.

Overview of modern wireless standards: 802.11 b/g/n.

Wireless network technologies: hotspots, wireless routers, wireless repeaters. Overview (non-technical) of the WiMax wireless technology, Internet key/dongle.

Hypertext Markup Language (HTML), hypermedia, authoring tools, ADSL, ISDN, Telnet, FTP, IMAP, POP3

Note: Only familiarity in broad terms (conceptual and comparative only) is required in this section

Module 6: Language Translators

Objectives

Students should be able to

· understand the structure of a formal language

· define the syntax of a formal language using relevant tools

· appreciate the need to define the semantics of the formal language

· describe the stages of compilation

· differentiate between various types of language translators

Content

		Formal languages

		The differences between natural and formal languages

The alphabet of the language

Terminal and non-terminal symbols

Language productions

		Defining the syntax of a programming language:

The syntax of a formal language

		Defining syntax using BNF and Syntax Diagrams. Overview of EBNF. Note that EBNF is not standard and students are only required to have a general knowledge of the EBNF standard.

Symbol classes (identifiers, delimiters, operators, numbers)

Reserved words

The use of BNF/EBNF to unambiguously express the syntax of a language

The use of parse trees (bottom up / top down) and canonical parsing to check that a statement is syntactically correct according to a set of rules or productions

The use of Reverse Polish Notation (RPN) to define arithmetical statements

The use of binary trees and stack to obtain and evaluate a post-fix (RPN) statement

		The semantics of a formal language

		The need for semantics (meaning) other than syntax (form)

Context sensitivity

		The compilation process

		The stages of compilation

· Lexical analysis

· removal of redundant text, simple error handling

· conversion of lexemes to tokens

· Syntax and semantic analysis

· parsing

· symbol table

· compile-time error detection and handling

· Code optimisation & generation

· simple techniques to optimise code

· translation into object code, linking

		Language translators

		The differences between assemblers, compilers and interpreters

Other types of compilers: macro pre-processors, cross-compilers, p-code compilers, virtual machine concepts, just-in-time compilation.

Module 7: Systems Analysis and Design

Objectives

Students should be able to

· Understand the main principles of systems analysis and design

· Develop a practical knowledge of the main stages of the systems development life cycle including: identification of problem, feasibility study, information processing requirements, analysis, design, implementation, testing and maintenance.

Content

		Overview of the System LifeCycle

		The main stages of a system life cycle: Feasibility Study, Analysis, Design, Programming, Testing, Installation and Maintenance.

Compare and Contrast The Waterfall lifecycle with that of Rapid Application Development (RAD).

		Identification of the problem

		What prompts an organization to develop a new system:

· current system may no longer be suitable for its purpose

· technological developments

· current system may be too inflexible or expensive to maintain

Understanding the problem completely through:

· Interviews

· Questionnaires

· Inspection of documents

· Observation (of existing system)

		Feasibility study

		Preparation of a report containing the scope and objectives of the proposed system. The feasibility report should determine whether it is worth proceeding from a number of aspects. The main feasibility aspects to consider are:

· Technical

· Operational

· Timeliness

· Economic

· Legal

· Social

Candidates should be able to describe and reason in the above terms whether or not the project is feasible

		System Analysis / Requirements Analysis

		System requirements

· Processing required

· Data storage

· Input and output formats

Joint Application Development

· How can JAD help in identifying business requirements?

· In what circumstance is it best to use JAD?

UML diagrams: How can UML help system analyst model various part of the system.

· What is a Use Case Diagram?

· How can a Use Case Diagram help in determining system requirements?

· Class Diagrams and their basic application.

Data flow of system: Fundamental concepts of Data Flow Diagrams (DFDs only up to Level 1)

Entity Attribute Models (only basic use)

Formulation and evaluation of alternative proposals

Development and maintenance needs for each solution

Choice between “off-the-shelf” solutions and purpose-built ones

		System Design

		Top-down and bottom up approaches to system design

The design specifies:

· Design of user interface

· Menu design

· Specification of data employed (data inputs)

· Organization of data output

· Specification of hardware and software selection

· Conversion plan

· Test strategy, test plan, and test data. (Test cases)

The use of the following algorithm representation forms:

· Hierarchical Input Output Processing (HIPO) chart

· Jackson Structured Programming (JSP) method

· Decision tables

· Flowcharts

· Structured text and pseudo-code

Modular design and modular interface concepts

The use of Prototyping

Comparing the Spiral Model with the Waterfall model

Preparing the documentation

		Coding and Testing

		Coding of modules

Documentation of any deviations from the original design

Module development

Testing according to Testing strategy

Preparing the User Manual

Types of Testing:

· Bottom up testing

· Top down testing

· Black box and White Box testing

· Alpha and Beta testing

		Implementation

		Tasks to be faced before the changeover is complete:

· Installing any applicable hardware

· Training system users

· Creation of master files

Change-over techniques (basic idea behind and comparative):

· Direct

· Parallel

· Phased

· Pilot

		Maintenance

		Best practices in (fundamental points only):

· System analysis

· Modularity

· Documentation generation

Types of maintenance (basic concepts behind and examples):

· Adaptive

· Corrective

· Perfective

· Predictive

 Module 8: Introduction to Data Structures and High Level Language Programming

Objectives

Students should be able to

· Identify and describe different programming paradigms including imperative, declarative, functional and object-oriented

· Gain a good understanding of the object oriented and imperative paradigms

· Have a good understanding of the fundamental concepts of object oriented programming including objects and classes, data encapsulation, inheritance and polymorphism

· Gain a good knowledge of the notions of class, object, attribute and operation

· Have a good knowledge of the different data types available

· Identify and have a sound understanding of the relevant programming constructs targeted at problem solving

· Select and appropriately apply standard algorithms for sorting and searching

· Know how to make use of files as a permanent type of storage mechanism

Content

		High Level Languages

		Introduction to programming paradigms

· Characteristics of each programming paradigm including: imperative, declarative, functional, object-oriented and event-driven programming

· Domain relevance of the above mentioned programming paradigms

Comparison between Object-oriented and Imperative Programming

· The need for a programming paradigm which models the real world in terms of software reusability

· The limitations of imperative programming: variable assignment rather than object manipulation

· The object-oriented solution: the use of classes and objects in problem solving

Object-Oriented Programming Characteristics

· Encapsulation (through classes and objects including attributes and operations)

· Message passing (i.e. operation invocation)

· Inheritance

· Information hiding

· Polymorphism

		Data Types

		Standard Types

· Numeric types and their ranges

· Character (char) and String types

· Boolean types

· Enumerated types

· Other classes as types

Constants, Variables, Scope and visibility of variables

		

		

		Control Structures

		

		Conditional

		Conditional structure statements

		Looping Structures

		Pre-tested loops

Post-tested loops

Nested loops

		Methods and classes

		The Java API (to be covered from point of view of usage and not content)

Argument passing by reference and by value

Class vs. Object (deserves good coverage from a conceptual point of view)

Static classes

Abstract classes

Recursion

		Data Structures

		

		Exception Handling

		Distinction between errors and exceptions

Identification of “throwable classes”

Use of “throws”

Use of the “try-catch” block

		Data structures and algorithms

		Purpose and application of data structures

		Stacks

		LIFO structure

Concept of Pointers (supported through examples)

Creating a stack (difference between a static and dynamic structure)

Push and Pop algorithms to add and delete elements from a stack

Traverse stack to display its contents

		Linear Lists

Linked Lists

Circular Lists

Double Linked Lists

Queues

		Creating the structures

Adding a node to the structure

Deleting a node from the structure

Traversing the structure

		Binary Trees

		Creating a tree

Adding a node

Deleting a node

Traversing the tree using the three traversals

· Pre-Order Traversal

· In-Order Traversal

· Post-Order Traversal

		Hash Tables

		Notion of a hash table

Creating and Updating a hash table

Hash functions

Collisions

		Other Structures

		Arrays:

· Single and Multi-dimensional

· Creating an array

· Filling in an array with data

· Displaying data from an array

Vectors and/or Array Lists

		

		

		Standard Algorithms

		

		Sorting Algorithms

		Space, time and complexity considerations for algorithms

· Insertion sort

· Selection sort

· Bubble sort

· Quick sort

· Merge sort

Use of the big-“O” notation to compare the above algorithms according to complexity criteria

		Searching Algorithms

		Linear Search

Binary Search

		

		

		Files and File Access

		

		Files

		Text files, Random files and Object Files

· Creating a file

· Writing to a file

· Reading from a file

· Updating a file (inserting and deleting)

· Merging files

Serialization

· The Serialize-able interface

· Serializing single instances

· Serializing Vectors or Array Lists

Module 9: Databases

Objectives

Students should be able to

· Understand the basic structure, function and importance of database management systems (DBMS)

· Be able to compare different database models

· Appreciate the importance of relational databases over traditional file systems

· Understand the logical structure and design of a relational database

· Describe data models diagrammatically using Entity-Relationship (E-R) diagrams

· Normalise a relational database up to the Third Normal Form

· Apply methods and tools for database design by using currently available database packages

· Understand the purpose of a query language and be able to interpret simple SQL commands

Content

		Database Management Systems

		The structure and functions of database management systems (DBMS) including:

· Data dictionary

· File manager

· Data manipulation language (DML)

· Data description language (DDL)

· Query language

· Security

The responsibilities of a database administrator

		Database Models

		Comparison of flat files, hierarchical, network and relational database models, object-oriented database models.

		Relational Databases vs. Traditional File Systems

		The advantages of databases over traditional file systems including: improved data consistency and portability, control over data redundancy, greater security

The disadvantages of databases over traditional file systems including: greater complexity and cost, vulnerability to system failure and unauthorised access, larger size

		Relational Databases

		The nature and logical structure of a relational database as a set of tables linked together using common fields.

		

		The purpose of primary, secondary and foreign keys, attributes (field), tuples (record).

		

		Use a short notation to represent a relational table in which the name of the table written in capitals is followed by a list of all the attributes in brackets, with the primary key underlined. E.g. STUDENT (stud_id, name, surname, DoB, address)

		Entity-Relationship Modelling

		The use of Entity-Relationship (E-R) Models to give a graphical description of the relationship between entities, including the following cardinality:

· one-to-one,

· one-to-many and

· many-to-many relationships

The standard “Crow’s Foot” notation is to be used to model and describe the above concepts.

		Normalisation

		The importance of normalisation to avoid unnecessary redundancy

Normalise a simple relational database up to the Third Normal Form

		Database Applications

		The purpose and use of commercial and top-end database packages, web-based database solutions

Develop a simple relational database using fourth generation applications such as Microsoft AccessTM or DelphiTM

		Structured Query Language (SQL)

		Understand the purpose and use of SQL commands to manipulate data including: SELECT, FROM, WHERE, ORDER BY, HAVING, GROUP BY, JOIN

Candidates will NOT be expected to write segments of SQL, only interpretation of SQL instructions will be examined.

Appendix A (to Module 2): Assembly languages

Limited instruction set to be used

		Data Transfer instructions

		MOV

Moves byte or word to register or memory

PUSH

Push a word on stack

POP

Pop a word from stack

		Logical Instructions

		NOT

Logical not (1’s complement)

AND

Logical and

OR

Logical or

XOR

Logical exclusive-or

		Arithmetic Instruction

		ADD , ADC

Add and Add with carry

SUB, SBB

Subtract and Subtract with borrow

INC

Increment

DEC

Decrement

CMP

Compare

		Transfer Instructions

		JMP

Unconditional Jump

JE

Jump on Equal

JNE

Jump on Not Equal

JL

Jump if Less

JLE

Jump if less or equal

JG

Jump if Greater

JGE

Jump if Greater or Equal

JC, JNC

Jump on carry or Jump on No Carry

CALL

Call Subroutine

RET

Return from subroutine

		Flag Manipulation

		CLC

Clear Carry

STC

Set Carry

		Shift and Rotate

		SHL, SHR

Logical Shift Left or Right

RCL, RCR

Rotate through Carry Left or Right

APPENDIX B: List of Acronyms

		ADSL

		· Asymmetric Digital Subscriber Line

		ASCII

		· American Standard Code for Information Interchange

		ATM

		· Asynchronous Transfer Mode

		BNF

		· Backus Naur Form

		CISC

		· Complex Instruction Set Computer

		CSMA/CD

		· Carrier Sense Multiple Access / Collision Detect

		DMA

		· Direct Memory Access

		DTP

		· Desktop Publishing

		EBNF

		· Extended Backus Naur Form

		ROM

		· Read Only Memory

		EEPROM

		· Electrically Erasable Programmable ROM

		EPROM

		· Erasable Programmable ROM

		FDDI

		· Fiber Distributed Data Interface

		FTP

		· File Transfer Protocol

		HDSL

		· High bit-rate Digital Subscriber Line

		IMAP

		· Internet Message Access Protocol

		ISDN

		· Integrated Services Digital Network

		LAN

		· Local Area Network

		LIFO

		· List In First Out

		MAN

		· Metropolitan Area Network

		OSI

		· Open Systems Interconnection

		POP

		· Post Office Protocol

		PROM

		· Programmable ROM

		RISC

		· Reduced Instruction Set Computers

		SMTP

		· Simple Mail Transfer Protocol

		USB

		· Universal Serial Bus

		WAN

		· Wide Area Network

4.
Recommended Texts

(Students are urged to look for the latest editions, ISBNs will therefore vary accordingly)

4.1
Student's basic text book

Heathcote, P.M., Langfield S., A-Level Computing, Payne-Gallway Publishers.

4.2
Other recommended text books

Brooshear, J.G., Computer Science – An Overview, Addison Wesley.

David, J.B., Kolling, M., Objects First with Java, Prentice Hall.

Wu, C.T., An Introduction to Object-Oriented Programming with Java, McGraw-Hill.

The use of the Internet, in the form of on-line documentation and reference sources, is strongly recommended.

4.3
Recommended references books

		Computer Architecture and Assembly

		Abel, P., IBM PC Assembly Language and Programming. Prentice Hall.

Kleitz, W., Digital and Microprocessor Fundamentals. Prentice Hall.

		Data Structures and Algorithms

		Carrano F. M., Prichard J. J., Data Abstraction and Problem Solving with C++: Walls and Mirrors. Addison Wesley.

		Databases and SQL

		Whitehorn M., Marklyn B., Inside Relational Databases. Springer-Verlag UK.

Taylor, A. G., SQL For Dummies. John Wiley & Sons Inc.

		Digital Logic

		Morris, M., Digital Design. Prentice Hall.

		Networking and Communications

		Hodson, P., Local Area Networks. Continuum.

		Operating Systems

		Ritchie, C., Operating Systems. Incorporating Unix and Windows. Continuum.

		Project Management

		Heathcote, P.M., Tackling Computer Projects. Payne-Gallway Publishers.

		Systems Analysis and Design

		Kendall, J. E., Kendall E. K., Systems Analysis and Design. Prentice Hall.

Lejk, M., Deeks, D., Sytems Analysis Techniques, Addison Wesley.

		Java

		Deitel, P.J., Deitel, H.M., Java, How to Program, Prentice Hall.

Schildt, H., Java: A Beginner's Guide, Osborne McGraw-Hill.

Schildt, H., Java: J2SE (Osborne Complete Reference S.), McGraw-Hill.

		Other

		British Computer Society, Glossary of Computer Terms, Addison-Wesley.

5.
Further Information Regarding the Project

5.1
Rationale

The project is intended to be an extended exercise requiring about three months of effort, typically conducted in the second year of study. It should demonstrate a student’s mastery of:

a) The syntax and semantics of the Java programming language. The mastery of control constructs within Java as well as the application of algorithmic logic to the resolution of real-world issues. (It should be made clear and stressed that Java is the language that must be used for the implementation of this project).

b) The identification of a problem domain, some basic analytical though towards the function and design of suitable data structures and algorithms. (Students are encouraged to identify more than one real-life application or original project that will later have to be discussed with their supervisor).

c) Fundamental testing procedures and the choice of test data to demonstrate the functional behaviour of a system;

d) Documenting a system both from a technical as well as a user perspective.

Emphasis should be directed at structured and efficient programming techniques rather than on cosmetic aspects. Originality in the selection of the problem and creative solutions will be rewarded. Typical projects should put into practice concepts and techniques covered by the syllabus.

Technical documentation presented should highlight major design decisions of data structures and algorithms. Clear, concise and correct use of English is expected.

5.2
Deadlines

School project assessment marks are to be submitted to the MATSEC Support Unit not later than the date stipulated by the MATSEC Board.

Note on Private candidates:

Private candidates are to submit all exercises for assessment to MATSEC Support Unit by the date stipulated by the MATSEC Board.

All candidates may be called for an interview regarding their work.

5.3
Procedure for Assessment of Projects

Candidates presented by Schools. Assessment of each candidate’s performance in the project will be school-based and is subject to moderation by the Markers’ Panel. Tutors will submit their mark, through the Head of School, to the MATSEC Support Unit, University of Malta. The school should make the project reports available to the Markers’ Panel for the purpose of carrying out the moderation exercise.

Private candidates. The project reports prepared by private candidates will be assessed directly by the Markers Panel. Such project reports should be made available at the MATSEC Support Unit, University of Malta for assessment. A percentage of these candidates may be asked to give a full presentation of their project during a personal interview with members of the Markers panel.

In all cases. The project should include a statement certifying that the substance of the project and the report are the candidate's own work, signed by both the tutor and the candidate. The project reports will be returned to schools and to private candidates following the publication of the examination results.

5.4
Project Report

The following points should be considered by candidates when presenting their project report and other relevant material:

a) Any CDs submitted must be clearly labelled (with the candidate’s name, project title in brief, exam session date). The CD jacket must contain a clear indication of their contents and how they are to be run. Only work on once-recordable CDs will be accepted. Any handed -in CDs must be finalised (i.e. no open multiple recording sessions are allowed). The use of floppy discs or re-writable CDs is NOT allowed.

b) Documentation should be presented in a neat and well organised manner.

c) The exact aims and objectives of the project should be stated and any deviation from the approved project should be adequately justified.

d) A clear basic project plan must be thought out and presented.

e) A clear table of contents should be provided towards the beginning of the report.

f) All sections within the documentation should carry clear and meaningful headings.

g) Any diagrams should be captioned and duly referenced in the text of the report itself.

h) Background material on the project should be included as opening material in the report.

i) The candidate should ensure that the documentation flow allows the reader to understand and use the project.

j) The chosen strategy for testing should be described and justified, and test data used together with test runs suitably recorded and presented.

k) The design of the user interface should be briefly described and justified.

l) The overall system structure should be made clear by including suitable diagrams as and whenever deemed necessary.

m) Any techniques and tools used should be clearly defined at some point prior to their use.

n) The use of any third party software should be justified and its use in relation to the candidate’s work explained.

o) Annotated listing of any software produced should be provided.

p) Any unsolved issues, errors or restrictions from the original specifications should be indicated with explanations and suitable comments.

q) Choices taken and alternatives discarded while designing should be adequately justified.

r) A critical evaluation of the overall success of the project should be made.

s) Ideas for possible enhancements or more general models for the problem should be discussed.

t) The original project plan should be compared with the actual history of the project.

u) The final report must be soft bound.

v) The report format should adhere to the following guidelines:

		Paper Size

		A4

		Printing

		One side of the paper only

		Line Spacing

		1.5

		Font Size

		12 (some sections in 10pt OK)

		Font Type

		Ariel

		Top, Bottom, Left Margins

		3cm

		Right Margin

		2 cm

		Page Numbering

		Arabic numerals, in page footer

		Page identification

		Candidate name, project title, month & year, in page header

		Maximum Length

		Approx. 10K words

For the sake of understand-ability, essential information, subsidiary or detailed technical material should be included in an appendix (recommended not to exceed half the size of the project report).

5.6
Grading Scheme

The overall examination grade will be based on an overall aggregate score, as indicated by the percentages of the various assessable components in Section 2 of this syllabus, and students must obtain a minimum mark in each paper to be established by the Markers Panel. Therefore, both project and written components should be considered as failing. Furthermore, the written component will contain a question, or questions, of a simple nature in compulsory Section A of Paper I which will specifically exercise the basic programming knowledge of candidates. Furthermore, candidates can qualify for Grades A to C, ONLY if they satisfy the examiners in the programming exercise(s) in Section A of Paper I.

Candidates will be allowed to re-submit the project in the next session if they fail to satisfy the examiners in this component of the examination in the first session. All candidates who fail in the project will be informed accordingly.

5.7
Project Marking Scheme
(guidelines for project assessors)

The award of marks will be based on the following assessment criteria.

Problem Definition

Presentation and clarity of the problem chosen:

The way the problem is presented and explained to the reader: whether the problem involves a computerization of an existing manual system e.g. a student database or an original application e.g. a game

How well the shortcomings are identified and what are the specifications the new system should have including forecasted limitations and constraints.

 [5]

Programming elements

Project Design:

The way classes are designed and explained, using standard tools as expected in Data Structures modules using Class Diagrams and Systems Analysis module using ONE Level 0 Context Data Flow Diagram.

[5]

Sub-programs design:

Explanation of sub-programs used using standard algorithms e.g. pseudo-coding or Flow Charts.

[5]

Use of basic JAVA programming elements:

Good use of JAVA programming elements including, use of: primitive data types, variables, pre/post tested loops, conditional & switch statements, methods with and without parameters, arrays, exception handling.

[15]

Algorithms & Logic

Efficient algorithms:

Credit should be given to candidates who design & employ good programming algorithms for sorting, efficient searching techniques and algorithms which make code re-usable and non-redundant

[8]

Flow of application

A good, logical flow of application execution with good data transfer, logical sequence of events, robustness in program structural design to ensure the actual flow of running matches with the intentional design.

[8]

Interface Efficiency

Credit to the interface which allows the easiest and most efficient navigation, shows a good design and is simple in built.

[4]

Object Oriented Principles

Use of programmer’s designed Classes and Objects

The level and quality used in designing own classes which create Objects and the way these Classes are integrated to the main application. How well encapsulation is ensured throughout the running of the program.

[4]

Inheritance:

Design and use of Inheritance principles to reduce the redundant code, including normal inheritance and use of abstract classes

[3]

Polymorphism:

Use of polymorphism in methods and arrays of Objects which suit any form of object

[3]

File Handling

Use of files:

Use of appropriate files to store data generated by the application: Object files, text files.

[3]

File Operations:

Operations carried out on files including reading, sorting, appending, and writing to files.

[2]

Application of JAVA API’s

Use of JAVA built-in API’s and other API’s:

The use of JAVA standard API’s such as packages (e.g. javax.swing, java.awt, java.util etc..) and their respective classes

[5]

Solution Evaluation and Testing Procedures

Evaluation:

An overall critical appraisal of the project and whether the aims of the project have been reached or not with justifications for any deviations from the original plan.

[8]

Testing Description:

How well the testing is designed, what strategies are employed and how well the test cases are chosen and presented.

[5]

Evidence of testing:

Evidence and documentation of test results according to test cases with input, output, expected output and screen shots showing the program running.

[8]

User’s manual:

A concise but complete user’s manual with clear, annotated screen shots, aimed at non-technical, end users explaining how the application can be installed and used.

[7]

Conclusion & Future Improvements:

The benefits of the current system and any areas in the project that need improvement.

[2]

5.8
Accredited Schools

Schools presenting candidates for this examination must normally offer full-time courses in Computer Science and must be accredited by the Maltese education authorities.

It is the responsibility of schools presenting candidates for this examination to ensure that they are properly equipped with the appropriate hardware equipment and software packages for any project work set for the candidates. No concession for candidates lacking the right tools and equipment will be made by the MATSEC Board.

5.9
Assessors

The teachers authorised to act as assessors of the project will be appointed by the University. Any authorised assessor reserves the right to interview any candidate of his/her choice regarding the content of any, or of all, of the candidate’s submitted assignments.

4

_1339396841.unknown

