

University of Malta Faculty for the Built Environment

Sustainable Mobility in Malta Transport Research in Practice SmartCity Malta, Ricasoli - 30th November 2012

Session I: Transport and Technology

Road Transport Information Sharing: Stakeholders' network analysis

Odette Lewis B.E.& A. (Hons.), M.Sc. Road Eng., A & C.E.

- 1. Sustainable mobility
- 2. Road transport information sharing
- 3. Stakeholders' network analysis
- 4. Implications

1. Sustainable Mobility

1. Sustainable Mobility

- Road transport information sharing
- Stakeholders' network analysis
- 4. Implications

Departing from the definition by the **World Business Council for Sustainable Development** as part of that organization's *Mobility Project 2030:*

...mobility that meets the needs of society to move freely, gain access, communicate, trade and establish relationships without sacrificing other essential human or ecological requirements today or in the future;

Rory Williams expands the definition of **sustainable mobility** by establishing a set of principles that provide a framework for policy goals:

- 1. Preserve the natural environment
- 2. Maintain human health and safety
- 3. Meet the travel needs of the population
- 4. Support a good economy
- 5. Minimize transport costs for access and mobility
- 6. Minimize infrastructure costs
- 7. Maintain energy security
- 8. Ensure long-term viability of the transport system

1. Sustainable Mobility

- 2. Road transport information sharing
- Stakeholders' network analysis
- 4. Implications

The availability, accessibility, proper use and dissemination of road transport information:

- addresses congestion
- improves the quality of travel and transport safety
- reduces road transport effects on the environment
- facilitates traveller information

1. Sustainable Mobility

- Road transport information sharing
- Stakeholders' network analysis
- 4. Implications

Resource efficiency: using the earth's limited resources in an efficient manner

Information sharing in the field of road transport is all about **RESOURCE EFFICIENCY**

Valid, comprehensive, and timely information is an important **resource** for planning, implementing, managing, and maintaining an increasingly multi-modal transportation system, its operation, and its interrelationships with the economy, our society, and the environment (Schofer et al., 2006)

1. Sustainable Mobility

- 2. Road transport information sharing
- Stakeholders' network analysis
- 4. Implications

The lack of quality road transport information or the dispersal of incomplete and outdated information hinders:

- the planner
- the network manager
- the public in general
- the researcher

Transport decisions

need to be taken with a sound basis of quality information.

2. Road transport information sharing

1. Sustainable Mobility

2. Road transport information sharing

- Stakeholders' network analysis
- 4. Implications

Solutions to current transport problems can only be found through close **cooperation** between:

- neighbouring localities
- administrations
- authorities
- political bodies
- interest groups
- private sector
- citizens

leading to the development of solutions through the constant involvement of all stakeholders

Sharing of information needs to occur on various levels:

- Local
- Regional
- National
- International

 Sustainable Mobility Road transport information sharing Stakeholders' 	 Quality information, made accessible to all potential users serves the basis for proper: Traffic management, control and forecasts Incident management Asset management Transport planning and modelling Land use planning Traffic impact statements, feasibility studies and environmental
network analysis 4. Implications	 impact assessments Multidisciplinary approach involving: Civil engineers Transport planners Geographers Information Technology experts

• Administrators

3. Stakeholders' network analysis

8-8 8-8

University of Malta Faculty for the Built Environment

٠

Road Transport Information Sharing – Stakeholders' network analysis

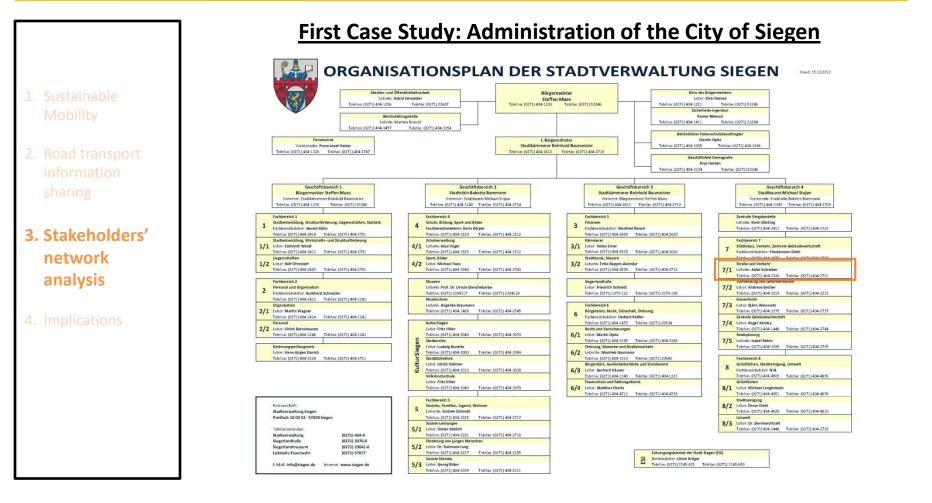
1. Sustainable Mobility

- Road transport information sharing
- 3. Stakeholders' network analysis
- 4. Implications

Research methodology

- PhD research project between UoM and University of Siegen
 - First Case Study: Administration of the City of Siegen
- Second Case Study: Straβen.NRW - road construction state enterprise in the region of North Rhine-Westphalia

- 1. Sustainable Mobility
- 2. Road transport information sharing
- 3. Stakeholders' network analysis
- 4. Implications


Social network analysis provides the vocabulary and quantitative analysis of network patterns.

This research puts emphasis on **INTERACTONS** based on **FLOWS OF INFORMATION** between **INDIVIDUALS** working within organisations.

The stakeholders were identified and the **links** established by carrying out a combination of **interviews** and distribution of **questionnaires** to the identified stakeholders. The main stakeholders were the starting points for the **"discovery"** of the actual networks.

The data collected was analysed and visualised using Pajek – A program for large network analysis.

Sustainable Mobility in Malta Transport Research Practice

1. Sustainable Mobility

 Road transport information sharing

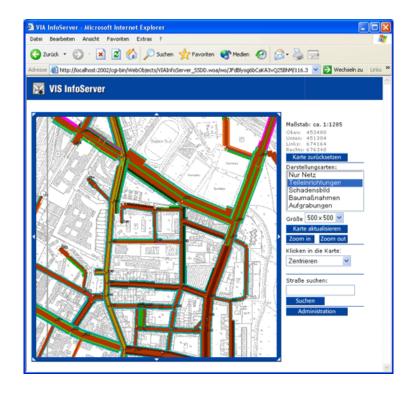
3. Stakeholders' network analysis

4. Implications

The city of Siegen is a university town and has a population of 103,370 (Destatis ,2011)

Department 7/1 Roads and Traffic

The Head of Department 7/1 was the main point of contact for carrying out the SNA exercise. **35 employees** work within three main sections in this Department:


- Roads (including maintenance),
- Traffic (including a co-ordination team)
- Road traffic authorities

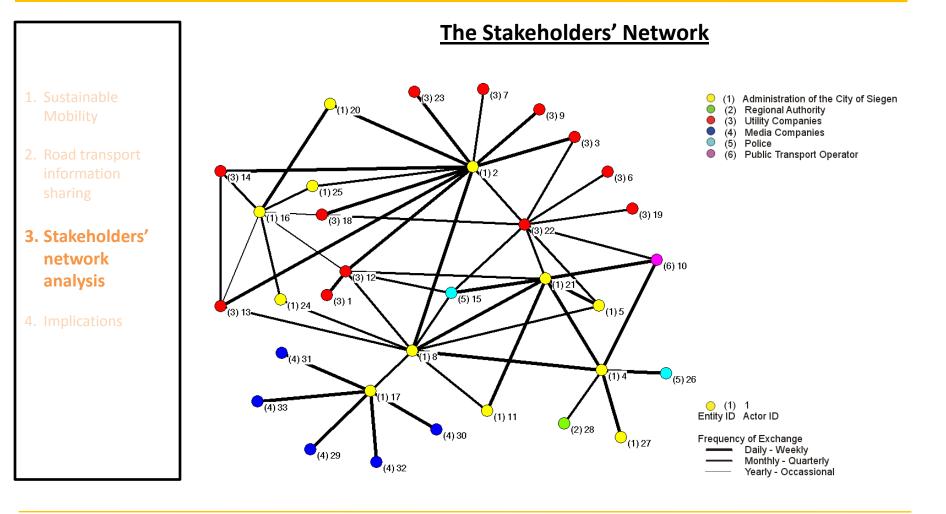
The administration of the city of Siegen uses the software VIA VIS Siegen, a CAOS (Computersoftware für Anwendungs-Orientierte Systeme GmbH, Karlsruhe) developed software for the monitoring and maintenance of the public road network in Siegen.

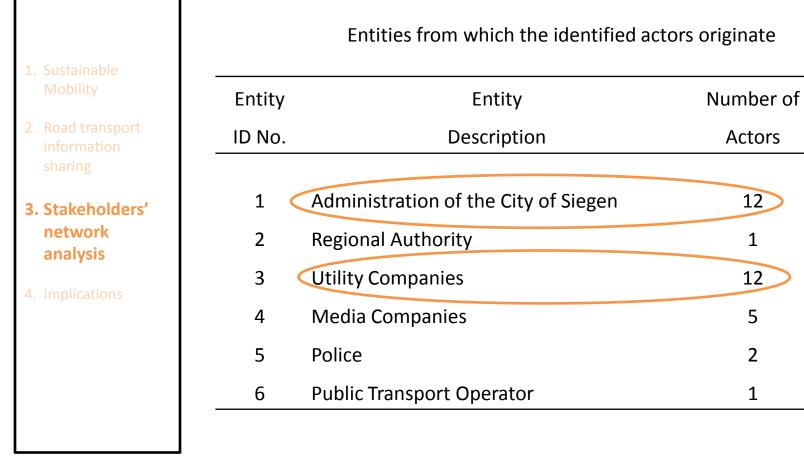
- Road transport information sharing
- 3. Stakeholders' network analysis
- 4. Implications

VIA VIS Siegen

The Questionnaire

Each participant was asked to indicate **up to 10 people**, **within or outside of their organisation**, with whom he/she shares road transport related information, which is **important for his/her work**.


Participants were also asked about the **frequency** and **formality** of information exchange.


Study initiated with **9 identified participants** which led to **12 overall respondents**

A network of **33 stakeholders (nodes)** was discovered with **61 instances of information exchange (links)**

3. Stakeholders'

network analysis

%

36.4%

3.0%

36.4%

15.2%

6.1%

3.0%

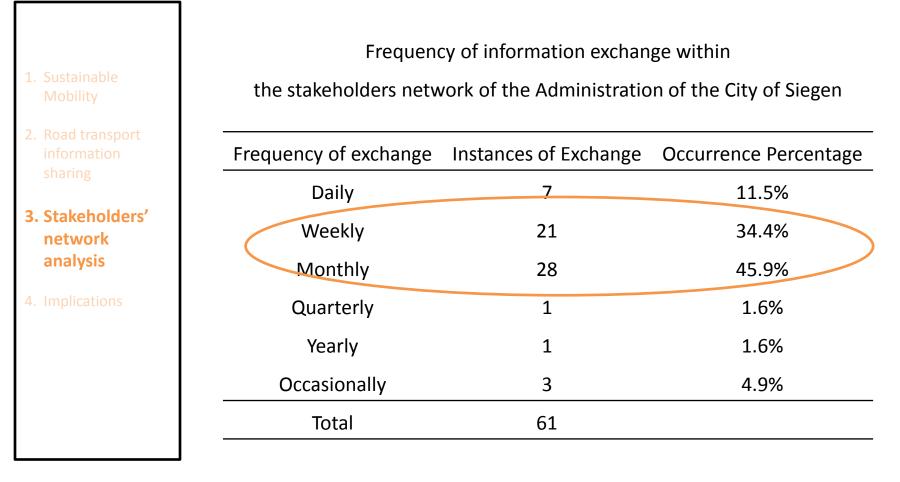
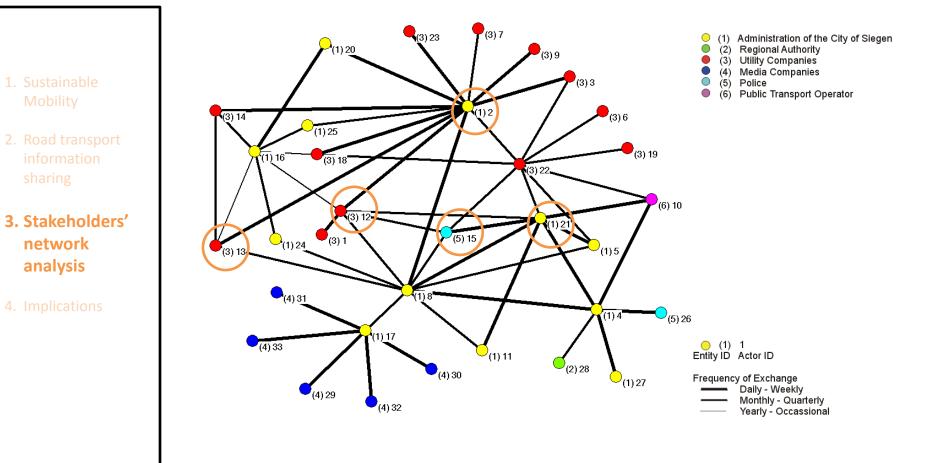
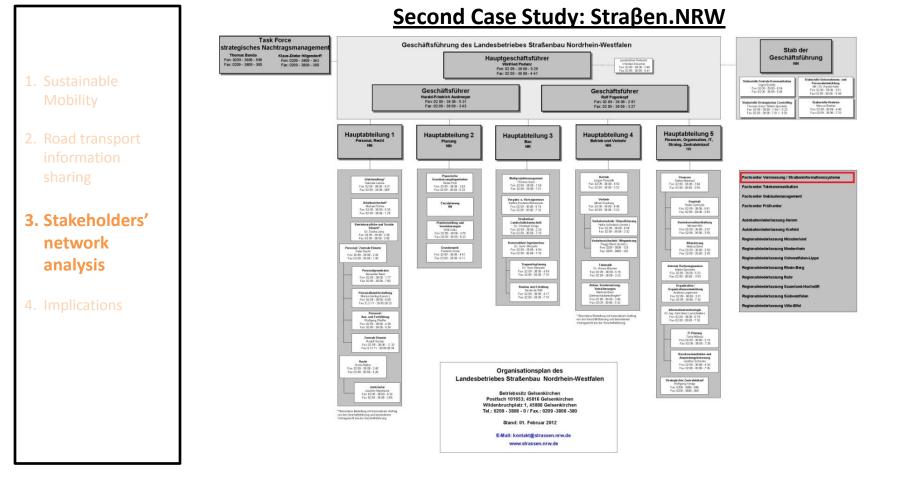




Table 4.4 Measures of Centrality for the actors within

		Table 4.4 Measures of Centrality for the actors within				
		the stakeh	olders network of the A	dministration of the City o	f Siegen	
Sustainable	Actor	Entity	Betweenness	Closeness	In degree	
Mobility	ID No.	ID No.	(Control)	(Ease of access)	(Popularity)	
Dependence of the	2	1	0.066	0.189	0.156	
Road transport information	21	1	0.038	0.196	0.125	
sharing	12	3	0.033	0.154	0.094	
	4	1	0.031	0.152	0.094	
Stakeholders'	22	3	0.027	0.100	0.031	
network analysis	18	3	0.023	0.154	0.094	
anaryois	8	1	0.022	0.061	0.031	
Implications	16	1	0.017	0.106	0.063	
	17	1	0.010	0.061	0.031	
	10	6	0.008	0.152	0.094	
	14	3	0.007	0.141	0.063	
	15	5	0.000	0.200	0.125	
	13	3	0.000	0.182	0.125	
	5	1	0.000	0.167	0.094	

1. Sustainable Mobility

 Road transport information sharing

3. Stakeholders' network analysis

4. Implications

Nordrhein-Westfalen (NRW) is the most populated state in Germany, with a population of **17.84 Million** (De Statis, 2011).

29,582kms (Statistik-Portal, 2012) of the 230,800kms of the German **inter-urban roads** are found in NRW.

Straβen. NRW

Straβen.NRW is responsible for:

- 2,207 kilometres of highways (Autobahnen)
- 4,767 kilometres of federal roads (Bundesstraßen)
- 12,837 Kilometres of state roads (Landesstraßen)
- Around 13,000 structures (bridges, tunnels and traffic sign gantries)
- 1,000 kilometres of district roads (Kreisstraßen) (Straβen.NRW, 2012) Districts, cities and municipalities are responsible for the remaining roads in NRW.

- Road transport information sharing
- 3. Stakeholders' network analysis
- 4. Implications

Straßen.NRW is made up of:

-Headquarters in Gelsenkirchen

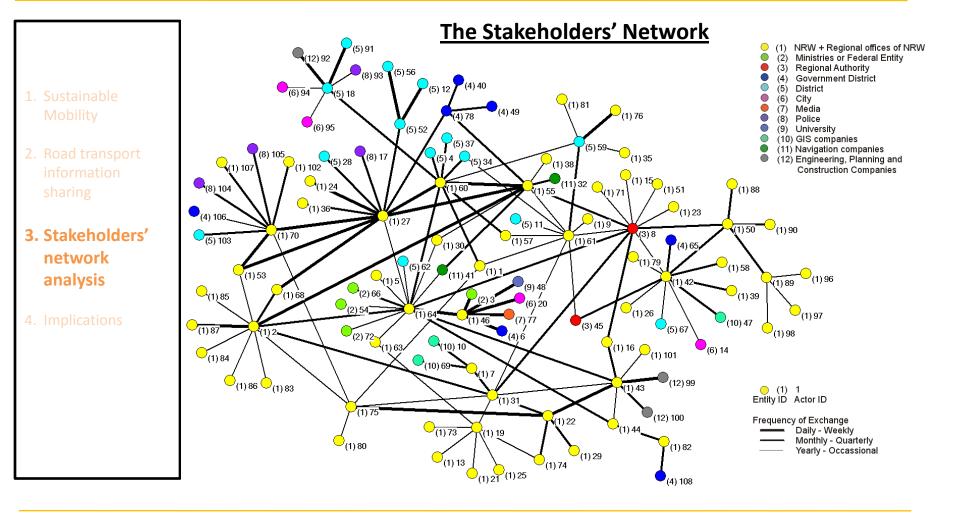
- -Four specialist centres in seven locations
- Ten establishments in 17 locations:
 - of which eight regional establishments focusing on roads and two establishments focusing on highways
- Eighty five road and highway maintenance authorities: of which 56 road authorities and 29 highway authorities

Around 6000 people are employed by Straβen.NRW

- 1. Sustainable Mobility
- Road transport information sharing
- 3. Stakeholders' network analysis
- 4. Implications

The SNA was carried out in one of the specialist centres: Fachccenter Vermessung/Straβeninformationssysteme (FCVS)

The team leader of the **NWSIB** team was the main point of contact for carrying out the SNA. The information system -Straβeninformationsbank Nordrhein-Westfalen (NWSIB) is in use in the region of NRW. NWSIB was developed by **GIS Consult GmbH** and covers all highways, parts from national, regional and district roads, but does not cover local roads in NRW.


There are currently 7 employees in FCVS working on NWSIB network. Actual data collection is decentralised with around 35 people involved. Around 4,000 people from different departments have access to NWSIB over intranet. Different access modes are given according to needs. On the internet only general data is provided. Sensitive data like land ownership is restricted to certain users.

The Questionnaire

Study initiated with **12 identified participants** which led to **24 overall respondents**

A network of **108 stakeholders (nodes)** was discovered with **145 instances of information exchange (links)**

Number of

actors

62

4

2

8

14

4

1

4

1

3

2

3

%

57.41%

3.70%

1.85%

7.41%

12.96%

3.70%

0.93%

3.70%

0.93%

2.78%

1.85%

2.78%

		Entities from which the identified actors		
1. Sustainable	Entity	Entity		
Mobility	ID No.	Description		
2. Road transport information	1	NRW + Regional offices of NRW		
sharing	2	Ministries or Federal Entity		
	3	Regional Authority		
3. Stakeholders' network analysis	4	Governmental Districts		
	5	Districts		
4. Implications	6	Cities		
	7	Media		
	8	Police		
	9	University		
	10	GIS companies		
	11	Navigation companies		
	12	Engineering, Planning and Construction Companies		

Entities from which the identified actors originate

	Frequency of information exchange within			
1. Sustainable Mobility	the staker	olders network of Stra	βen.NRW	
2. Road transport	Frequency of	Instances of	Occurrence	
information sharing	exchange	Exchange	Percentage	
3. Stakeholders'	Daily	12	8.3%	
network analysis	Weekly	12	8.3%	
4. Implications	Monthly	30	20.7%	
4. Implications	Quarterly	29	20.0%	
	Yearly	16	11.0%	
	Occasionally	46	31.7%	
	Total	145		

	Measu	Measures of Centrality for the actors within the stakeholders network of Stra β en.NRW			
	Actors	Entities*	Betweenness	Closeness	In degree
	ID No.	ID No.	(Control)	(Ease of access)	(Popularity)
	64	1	0.049	0.095	0.056
1. Sustainable	27	1	0.042	0.081	0.037
Mobility	60	1	0.033	0.078	0.037
2. Road transport	8	3	0.026	0.035	0.019
information	50	1	0.019	0.039	0.028
sharing	55	1	0.019	0.090	0.047
	70	1	0.013	0.062	0.019
3. Stakeholders'	44	1	0.012	0.065	0.009
network	42	1	0.010	0.039	0.028
analysis	18	5	0.009	0.060	0.009
-	43	1	0.009	0.052	0.019
4. Implications	78	4	0.006	0.064	0.009
	2	1	0.005	0.019	0.009
	52	5	0.004	0.058	0.009
	75	1	0.003	0.019	0.009
	61	1	0.003	0.019	0.009
	82	1	0.002	0.053	0.009
	89	1	0.002	0.026	0.009
	59	5	0.001	0.019	0.009
	31	1	0.000	0.075	0.075

- 3. Stakeholders' network analysis

4. Implications

1.	Sustainable
	Mobility

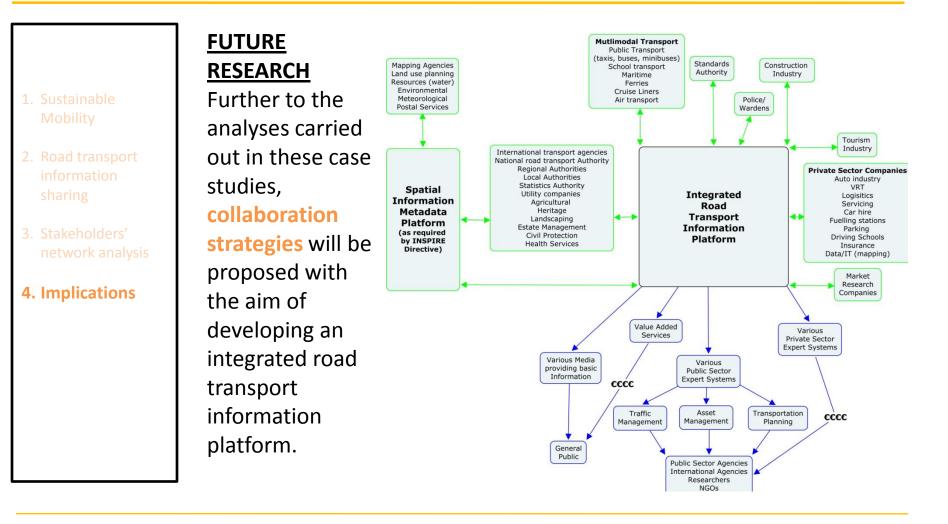
- Road transport information sharing
- Stakeholders' network analysis
- 4. Implications

The two case studies highlight differences on what occurs on a: LOCAL vs. REGIONAL level

The local scenario involves a **relatively small set-up**, where information is shared with more **external stakeholders Versus** The regional scenario, which involves quite **an extensive set-up** and where information is shared more between **internal stakeholders**.

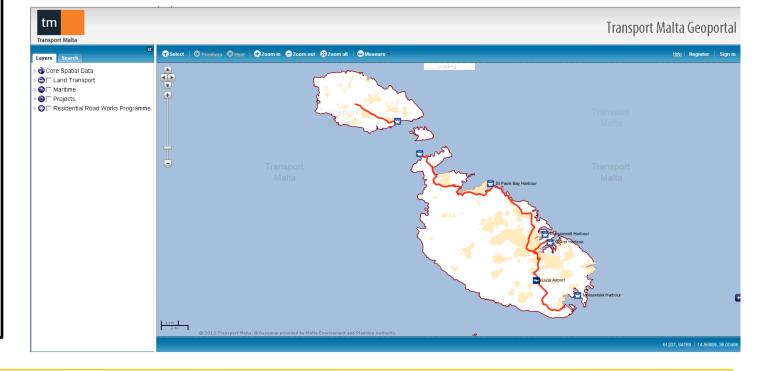
In the local scenario the **central actors** originate from **both within and outside** the Administration of the city of Siegen **Versus** The regional scenario, where the **central actors** originate **within** Straβen.NRW.

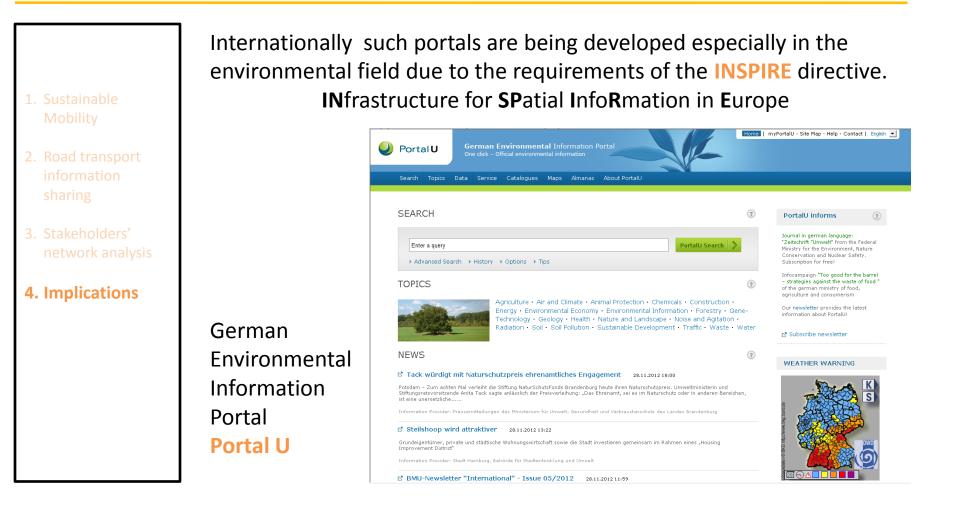
In the local scenario information is shared more due to asset management reasons Versus


The sharing of more strategic information on a regional level.

- Road transport information sharing
- Stakeholders' network analysis
- 4. Implications

<u>**PREVIOUS RESEARCH**</u> included the development of a prototype road transport information platform for Malta, where data from various stakeholders was presented on one platform. This platform was also evaluated by a number of stakeholders working in this field.





- Road transport information sharing
- Stakeholders' network analysis
- 4. Implications

This implies that existing platforms such as **TM's GEOPORTAL** can be extended and developed so that information from a greater number of stakeholders can be more easily **accessed** and **shared** via one Transport Platform .

Sustainable Mobility in Malta Transport Research Practice

8-8 8-8

University of Malta Faculty for the Built Environment

CONCLUSIONS

In order for this to materialise, a different approach shall be taken to the sharing of road transport information:

- Multi-disciplinary approach including different government departments and authorities
- User needs on a locality level vs. a national level shall be taken into account
- Local councils can thus be more involved in providing information about :
 - -condition of their infrastructure assets
 - -traffic management schemes
 - -parking management schemes
- This should lead to better informed decision makers, planners and network managers. In turn the general public will benefit from a better maintained and efficient road transport network, which reflects the concepts of SUSTAINABLE MOBILITY.

University of Malta Faculty for the Built Environment

THANKYOU FOR YOUR ATTENTION