Azzopardi, G., Strisciuglio, N., Vento, M. & Petkov, N. 2015, "Trainable COSFIRE filters for vessel delineation with application to retinal images", Medical image analysis, vol. 19, no. 1, pp. 46-57.
Azzopardi, G. & Petkov, N. 2014, "Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models.", Front Comput Neurosci, vol. 8, pp. 80.
Azzopardi, G., RodrÃguez-Sánchez, A., Piater, J. & Petkov, N. 2014, "A Push-Pull CORF Model of a Simple Cell with Antiphase Inhibition Improves SNR and Contour Detection", PLoS ONE, vol. 9, no. 7, pp. e98424.
Azzopardi, G. & Petkov, N. 2014, "COSFIRE: A Brain-Inspired Approach to Visual Pattern Recognition", Lecture Notes in Computer Science, Brain-Inspired Computing
, eds. Gr, L. inetti, T. Lippert & N. Petkov, Springer, , pp. 76-87.
de Vries, H., Azzopardi, G., Koelewijn, A. & Knobbe, A. 2014, "Parametric Nonlinear Regression Models for Dike Monitoring Systems", Lecture Notes in Computer Science, Advances in Intelligent Data Analysis XIII, eds. H. Blockeel, M. van Leeuwen & V. Vinciotti, Springer International Publishing, , pp. 345-355.
Azzopardi, G. & Petkov, N. 2013, "Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters", Pattern Recognition Letters, vol. 34, no. 8, pp. 922-933.
Azzopardi, G. & Petkov, N. 2013, "A shape descriptor based on trainable COSFIRE filters for the recognition of handwritten digits", Computer Analysis of Images and Patterns (CAIP 2013) Lecture Notes in Computer Science, pp. 9.
Azzopardi, G. & Petkov, N. 2013, "Trainable COSFIRE filters for keypoint detection and pattern recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 490-503.
Azzopardi, G. & Petkov, N. 2012, "A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model", Biological cybernetics, vol. 106, no. 3, pp. 177-189.
Azzopardi, G. & Smeraldi, F. 2009, "Variance Ranklets: orientation-selective rank features for contrast modulations", British Machine Vision Conference (BMVC).
Topics of interest