
Christian Bartolo Burlo • 23/06/23

Automated test generation for
Web-based APIs
SeTTS: Session Type Test Synthesis
joint work with Adrian Francalanza, Emilio Tuosto, and Alceste Scalas

Outline of tool and approach
Tool demo
Results + Conclusion

Outline of tool and approach
Tool demo
Results + Conclusion

Outline of tool and approach
Tool demo
Results + Conclusion

Why should we test APIs?

Web-based APIs
Why we should test them

• Over 80% of all web traffic is API usage

• 2018 — Facebook API bug

• 2019 — Wells Fargo API outage

• 2022 — FreeHour API bug

These incidents highlight the need for
comprehensive testing to identify and
mitigate vulnerabilities in API endpoints.

We focus on REST APIs. Why?
70% of all public APIs are REST APIs.
Existing documentation frameworks, such as OpenAPI, GraphQL.

Understanding REST
A brief introduction

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}…………………………….

Update owner.

Delete the user.

Creates a new pet owner.

Retrieve owner with ID.

Method URL

Web-based APIs
Challenges of testing REST APIs

• Request parameter generation and
dependencies

• Validating responses: response code
and body

• API call dependencies

• Request/response formatting

• Error reporting/reproducibility

 - POST /api/owner.…………………… 

 - GET /api/owner/{id}……………………….. 

 - PUT /api/owner/{id}…………………….. 

 - DELETE /api/owner/{id}…………….

Update owner.

Delete the user.

Creates a new pet owner.

Retrieve owner with ID.

Current testing approaches
The state-of-the-art

fully-automated

manual

schema
 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}……………………………..…….

Update owner.

Delete the user.

Creates a new pet owner.

Retrieve owner with ID.

Current testing approaches
Fully-automated REST API testing

fully-automated manual

schema
 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}……………………………..…….

Update owner.

Creates a new pet owner.

Retrieve owner with ID.
tools

1

2

3

4

Current testing approaches
Fully-automated REST API testing

fully-automated manual

Delete the user.

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}……………………………..…….

Update owner.

Creates a new pet owner.

Retrieve owner with ID.
tools

1

2

3

4

schema

Current testing approaches
Fully-automated REST API testing

fully-automated manual

Delete the user.

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}……………………………..…….

Update owner.

Creates a new pet owner.

Retrieve owner with ID.
tools

1

2

3

4
schema

Current testing approaches
Fully-automated REST API testing

fully-automated manual

Delete the user.

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}……………………………..…….

Update owner.

Creates a new pet owner.

Retrieve owner with ID.
tools

1

2

3

4
schema

Current testing approaches
Fully-automated REST API testing

fully-automated manual

Delete the user.

Current testing approaches
Fully-automated REST API testing

fully-automated manual

• Very inefficient use of resources, a
single test run can take a couple of
hours.

• Shooting in the dark, as one cannot
tailor tests to specific needs.

• Limited in what sort of errors they
are able to detect.

• However, it’s fully automated, i.e.,
push button technology.

Current testing approaches
Manual tests

• Well, they’re manual tests.

• Time consuming, error-prone and
difficult to maintain.

• However, they can be tailored for
each particular case.

• This ensures coverage of particular
cases, as needed by tester.

fully-automated manual

Current testing approaches
Manual tests

fully-automated manual

What if we want the efficiency of automated tests
but the coverage of manually-written tests?

Session Type Test Synthesis
A model-based testing approach

fully-automated manualSeTTS

• We attempted to strike a balance
between fully-automated and
manually written tests.

• By building models of the intended
communication protocol, we can
direct automated tests.

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}…………………………….

Update owner.

Authenticate the user.

Creates a new pet owner.

Retrieve owner with ID.

schema

tools

1

2

3

4

Session Type Test Synthesis
A model-based testing approach

1234

Our approach
Model-based testing

SeTTS API
schema

model

.st
driver

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}…………………………….

Update owner.

Authenticate the user.

Creates a new pet owner.

Retrieve owner with ID.

Our approach

model

.st driver

test: 1

Model-based testing

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}…………………………….

Update owner.

Authenticate the user.

Creates a new pet owner.

Retrieve owner with ID.

Our approach

model

.st

test: 2

driver

Model-based testing

 - POST /api/owner.………………………………… 

 - GET /api/owner/{id}……………………………….. 

 - PUT /api/owner/{id}……………………………………….. 

 - DELETE /api/owner/{id}…………………………….

Update owner.

Authenticate the user.

Creates a new pet owner.

Retrieve owner with ID.

Our approach

model

.st driver

- response code

- response body

- assertions on payload data

Model-based testing

Our approach

model

.st driver

reproducible 
tests

statistics

logs

sequences of cURL commands

random seeds of tests,  
sequence of messages, …

model coverage, failure rate, …

Model-based testing

Questions

Tool demo
https://chrisbartoloburlo.github.io/cots/

Conclusion

SeTTS Analysis
Quantitative aspects

Application SeTTS 
line cov.

Manual 
line cov.

Fully-auto
line cov. App LOC

RestCountries 1722 896 2409

GestaoHospital 2857 2532 4427

PetClinic 3099 3127 10,416

UsersRegisty 2035 1906 5452

FeaturesService 1626 1576 360 2026

LanguageTool 4999 935 18,053

PetStore 1987 763 3693

SeTTS Analysis
Qualitative aspects

• Request parameter generation
and dependencies

• Validating responses: response
code and body

• API call dependencies

• Request/response formatting

• Error reporting/reproducibility

!CollectionApi.getCollection(id: Int(genId)).

?C200(collections: Seq[Collection])

<util.checkCollections(collections)>

• Request parameter generation
and dependencies

• Validating responses: response
code and body

• API call dependencies

• Request/response formatting

• Error reporting/reproducibility

!CollectionApi.getCollection(id: Int(genId)).

?C200(collections: Seq[Collection])

<util.checkCollections(collections)>

SeTTS Analysis
Qualitative aspects

• Request parameter generation
and dependencies

• Validating responses: response
code and body

• API call dependencies

• Request/response formatting

• Error reporting/reproducibility

!CollectionApi.getCollection(id: Int(genId)).

?C200(collections: Seq[Collection])

<util.checkCollections(collections)>

SeTTS Analysis
Qualitative aspects

• Request parameter generation
and dependencies

• Validating responses: response
code and body

• API call dependencies

• Request/response formatting

• Error reporting/reproducibility

!CollectionApi.getCollection(id: Int(genId)).

?C200(collections: Seq[Collection])

<util.checkCollections(collections)>

SeTTS Analysis
Qualitative aspects

• Request parameter generation
and dependencies

• Validating responses: response
code and body

• API call dependencies

• Request/response formatting

• Error reporting/reproducibility

!CollectionApi.getCollection(id: Int(genId)).

?C200(collections: Seq[Collection])

<util.checkCollections(collections)>

SeTTS Analysis
Qualitative aspects

