Please use this identifier to cite or link to this item:
https://www.um.edu.mt/library/oar/handle/123456789/22958
Title: | Genetic search feature selection for affective modeling : a case study on reported preferences |
Authors: | Martinez, Hector P. Yannakakis, Georgios N. |
Keywords: | Computer simulation |
Issue Date: | 2010 |
Publisher: | ACM |
Citation: | Martinez, H. P., & Yannakakis, G. N. (2010). Genetic search feature selection for affective modeling : a case study on reported preferences. Third international workshop on affective interaction in natural environments, Firenze. 15-20. |
Abstract: | Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built. The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method is capable of picking subsets of features that generate more accurate affective models. |
URI: | https://www.um.edu.mt/library/oar//handle/123456789/22958 |
Appears in Collections: | Scholarly Works - InsDG |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Genetic_search_feature_selection_for_affective_mod.pdf | 652.12 kB | Adobe PDF | View/Open |
Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.